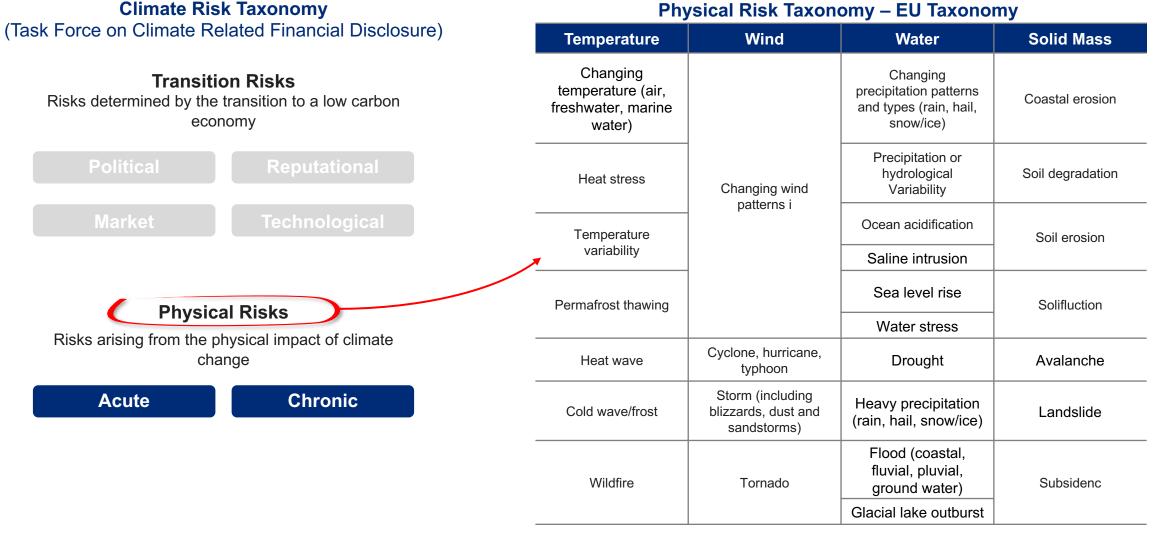


IMPACTS OF CLIMATE CHANGE ON THE ELECTRICITY TRANSMISSION INFRASTRUCTURE – REFLECTIONS ON DATA AND APPROACHES

Swenja Surminski Managing Director, Climate, Marsh McLennan Advantage, Professor in Practice Grantham Research Institute/LSE, Member UK Committee on Climate Change – Adaptation Committee

EXPERT WORKSHOP

EUROPEAN CLIMATE-RESILIENT ENERGY SYSTE Enhancing climate adaptation and system resilience in the ENTSO-E TYNDP CBA Framework

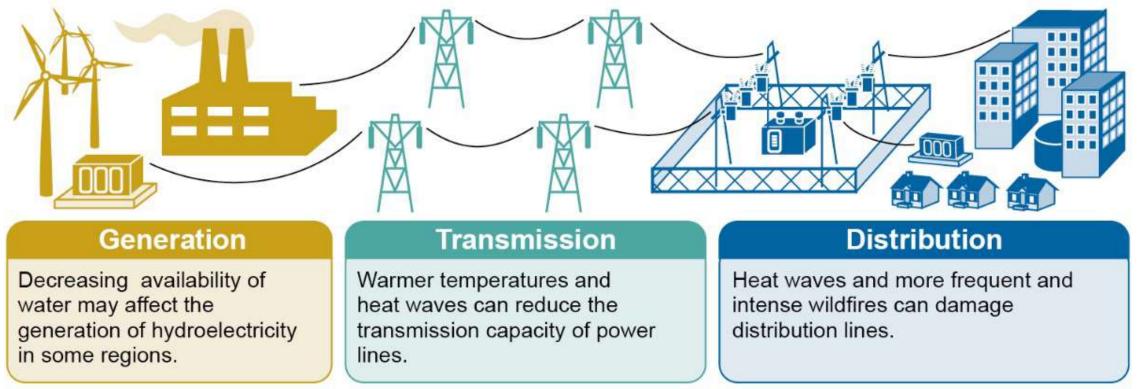

Overview

- Adaptation is a process, not a one-off intervention. Need to continuously assess adaptation pathways.
- **Prioritization** is important urgency, timing, scale.
- Essential to weigh pragmatism, practicability, robustness and fitness for the future.
- Suggest establishing a list of principles with regards to treatment of data, uncertainty, return periods.
- Importance of considering risks at asset level, system level and interdependencies across sectors.
- Window of opportunity: Establishing **link between resilience and net zero/ smart grids as well as nature agenda** this is changing system requirements/set-up, investments are being made.
- **Data needs:** We need to establish a relationship between assets, systems, hazards and damages for probabilistic risk analysis:
 - Hazard data sudden/extreme and slow onset risks. **Multi-hazard** ideally!
 - Asset data: locations and valuations
 - Systems data including macro-economic data, sector indicators, elasticity of demand, often difficult to find
 - Damage curves
 - Adaptation assessment (CAPEX, OPEX, co-benefits, maintenance costs, etc.)
- Most analysis on asset level, some modelling of system level, but very little on interdependencies.
- Translating into adaptation action requires indicators and qualitative assessments: monetization, investment return, who pays, alignment with pricing/tariff regimes?
- **Monitoring adaptation** is essential requires clear methodology.

MarshMcLennan

European Taxonomy: goals and provisions on climate adaptation

The robust climate risk and vulnerability assessment shall be undertaken on a variety of physical risks



European

Commission

 \bigcirc

Examples of Climate Change Effects on the Electricity Grid

Source: GAO analysis of reports. | GAO-21-346

When assessing impacts and designing adaptation measures it is important to reflect on assets, systems and interdependencies.

Climate risks will escalate

In 2020, 87% of global power generated from thermal, nuclear and hydroelectric systems directedly depended on water availability

Climate impact	Effects on generation	Effects on transmission and distribution	Effects on demand		
Rising global temperatures	 Cooling efficiency Generation potential Need for additional generation 	Efficiency	 Cooling and heating 		
Changing precipitation patterns	Output and potentialPeak and variabilityTechnology application	 Physical risks 	CoolingWater supply		
Sea-level rise	OutputPhysical risksNew asset development	Physical risksNew asset development	Water supply		
Extreme weather events	 Physical risks Efficiency	Physical risksEfficiency	Cooling		

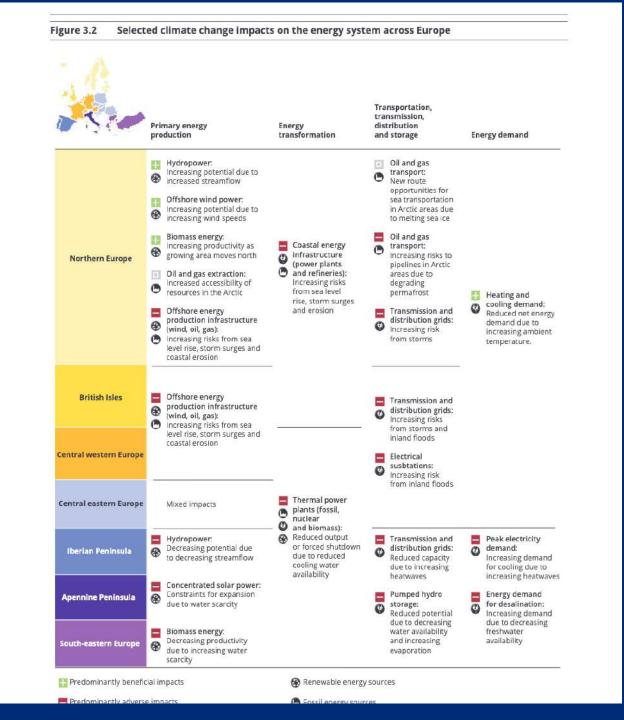
Source: International Energy Agency, Climate Resilience Electricity Security 2021 According to Marsh McLennan's Flood Risk Index, over a quarter of Europe's power generation capacity may be affected by floods under 2.0 and 3.5°C conditions

	Present Conditions	2 °C	3.5 °C
Global	23%	41%	48%
EU	7%	28%	29%
United States	23%	36%	41%
United Kingdom	5%	16%	18%

Source: Marsh McLennan, Flood Risk Index

Climate risks are already material to Europe's energy security

France

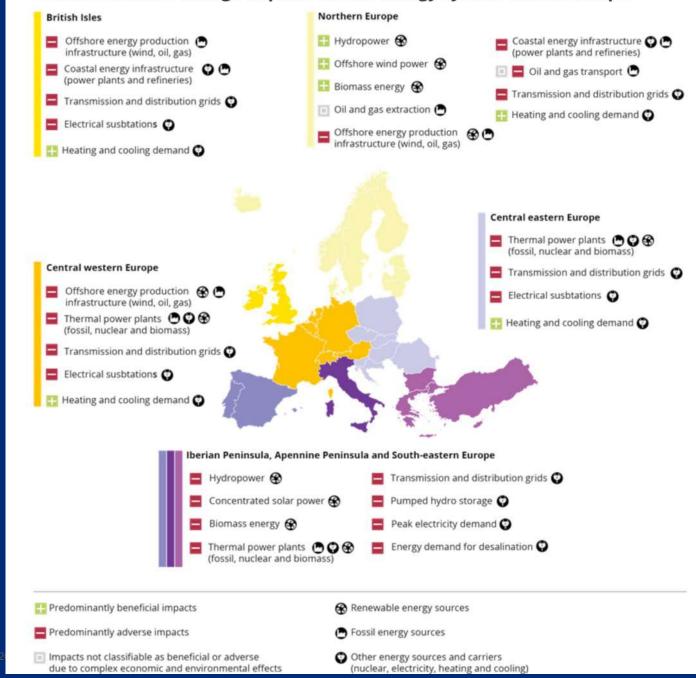

Spain

Germany

Italy

France became a net energy importer in 2022 for the first time in 42 years. Prolonged drought conditions led to severe water shortages used in the cooling of nuclear plants. France's nuclear outputs plunged by 23% in 2022.

In 2022, the cumulative impact of heatwaves, record summer temperatures and dry weather led to a 48% drop in Spain's hydropower capacity. The 2021 European floods damaged a considerable number of German power utilities. Over 200,000 people were impacted by power outages. RWE, a major producer, reported damages in the double-digit million Euro range. Northern Italy was hit by hurricane-force snow winds for 3 days in 2018. The storm damaged electric transmission and distribution systems, causing over 90 blackouts, and a 5000MW gap in power supplies.



Assessment across Europe

Source: EEA 2019 https://www.eea.euro pa.eu/highlights/clim ate-change-putspressure-on -

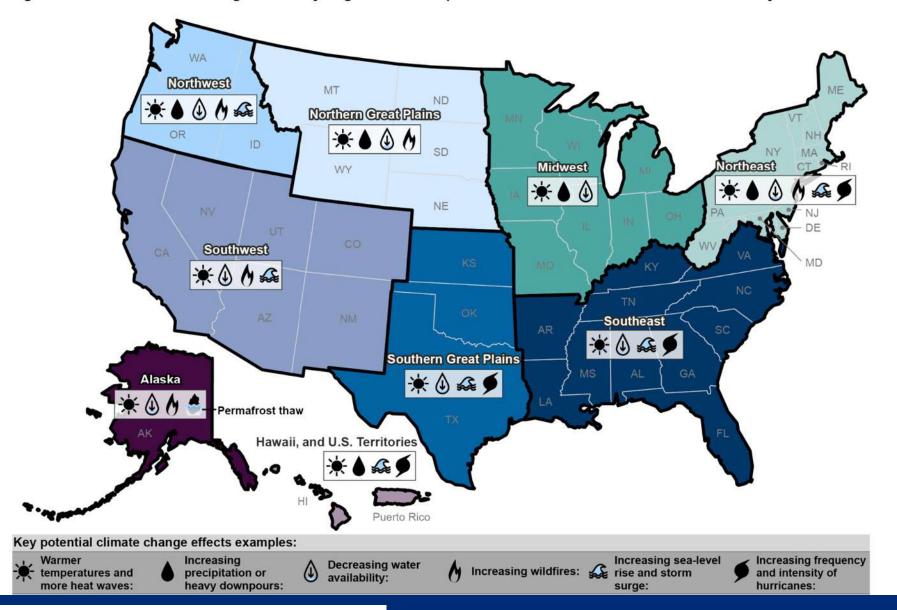
30 MarshMcLennar

Selected climate change impacts on the energy system across Europe

Source: EEA 2019 https://www.eea.euro pa.eu/highlights/clim ate-change-putspressure-on -

🖄 MarshMcLennan

The need for climate resilience Potential impacts on the energy system due to climate trends & extreme weather events in the UK

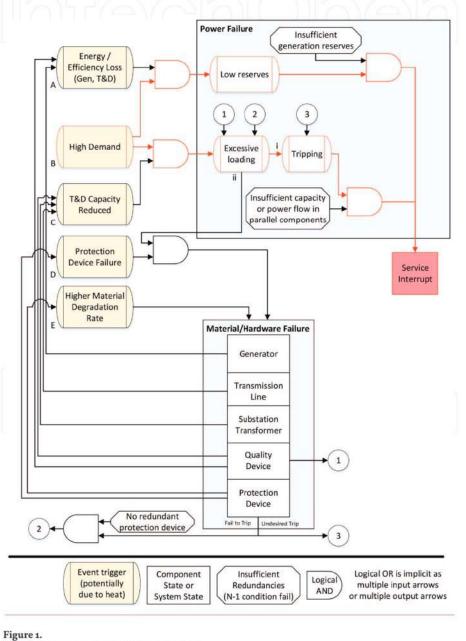

country level assessment

Climate hazard	Expected change by 2050
Heatwaves	~50% chance of 2018 summer each year (around 10-25% currently)
Flooding (river, surface and coastal)	~5% wetter winters on average (compared to 1981-2000) ~10% increased intensity of heavy rainfall
	10 – 30 cm increase in average sea levels (above 1981- 2000 levels)
Drought	~10% drier summers on average (than over 1981 – 2000)
Wind strength and wind regimes	Highly uncertain
Storminess and occurrence of storm events	Highly uncertain
Snow and ice	Decreasing but still possible

Source UKCP18 Projections; summarised in CCC (2021) Independent Assessment of UK Climate Risk

Figure 3: Potential Climate Change Effects by Region and Examples of Climate-Related Events on the Electricity Grid

Source: https://www.gao.gov/assets/gao-21-346.pdf


Hazard-level assessments

Source: Burillo (2018): Effects of Climate Change in Electric Power Infrastructures

Climate hazard	Key impacts	Impacted segment	Adaptation strategies
Increased air temperatures	 Lower generation efficiency 	Generation	 Implement air chillers or more efficient chillers
	 Decreased coal-to-gas conversion efficiency 		• Site new generation in cooler locations
	 Decreased combined cycle gas turbine efficiency 		
	• Decreased solar PV efficiency		
	 Reduced carrying capacity of lines and transformers Increased losses in lines and transformers 	Delivery- Transmission & Distribution	 Underground hardware Use more heat-resistant materials Implement more effective cooling for transformers
	• Increased peak demand and total energy demand for cooling	Demand-End Use	 AC energy efficiency Building thermal efficiency Peak load shifting

Service/system assessments

Source: Burillo (2018): Effects of Climate Change in Electric Power Infrastructures

Fault tree from heat wave to service interruption.

- Interconnections between different industry sectors is a major source of risk for the energy network, with failures from one sector frequently causing impacts.
- **Telecommunications and road transport** are thought to be the most important sources of risk. Telecommunications are already important for automated and remotely controlled equipment, and for communication with personnel in the field.
- Risk from **telecommunications failure** has the potential to increase in the future with greater reliance on smart systems (dependent on telecommunications).
- **Road transport** is often essential for restoration of supply and access to assets for routine maintenance and emergency restoration. Societal responses to climate change may also increase the risk on the road network from the electricity network, as electric vehicles become more commonplace.

Source:https://www.energynetworks.org/assets/images/CCRA3 %20report%20v1.0%20final.pdf

Delivering a reliable decarbonised power system Key findings – planning for climate resilience

The climate risks to the electricity system are currently underplayed.

Climate-related impacts will multiply as we rely increasingly on electricity for heat and transport needs.

The **cascading impacts of electricity failu**re are already significant. The risks will grow as the economy becomes increasingly electrified and as extreme weather events become more common and severe due to climate change.

Important to build in system-and asset-level resilience from the start.

Delivering a reliable decarbonised power system March 2023

Climate Change Committe

Figure 6.1 Monitoring map for energy Reliable energy supply in a Net Zero economy Reduced vulnerability of energy Interdependencies known and System level security of supply assets to extreme weather managed Asset-level flood resilience Generation capacity, flexibility and Interdependencyrisks (e.g. Required Outcomes redundancy transport, water, digital) included in Condition of electricity poles, gas pipes and other power system Generation mix and location climate risk assessments and adaptation action plans for all major infrastructure Water needs for Net Zero electricity and gas producers and Heat protection/operating compatible generation transmission & distribution system thresholds of substations, cables, infrastructure operators overhead lines and other power system infrastructure Ground conditions (subsidence. landslides and erosion) Abstraction restrictions imposed on generators Data Funding & investment Co-ordination of resilience Centralised reporting on weather-• £ spent (and forecast) on system responsibilities across Gov resilience (e.g. flood protection, related outages departments pole management, vegetation Data on consideration of climate risk management) Climate resilience incorporated into adaptation in major infrastructure relevant Net Zero policies project approvals Consideration of adaptation needs in investment decisions (e.g. UK Clear governance arrangements Data provision to local resilience Infrastructure Bank) and responsibilities for climate groups on interdependencies resilience across the sector Legislation and regulation Standards Planning Information and reporting Climate resilience remit Minimum resilience standards Clear resilience · Mandatory reporting on for Regulators for generators and transmission outcomes in national climate risk and & distribution adaptation plans adaptation activities by Climate resilience as a companies covering all CCRA with monitoring in all major electricity and statutory consideration gas producers, risks place for planning authorities transmission system decisions on Tests for climate resilience being Operator-level plans infrastructure operators infrastructure applied to major infrastructure for climate resilience and regulators projects Observed and projected changes in: Age and condition of Percentage share of electrical energy from VBE power infrastructure summer temperatures and extreme Location of power Proportion of customers heat events infrastructure dependent solely on electricity winter and summer rainfall and intensity of rainfall events -flooding and drought Criticality of individual Consumer bill considerations impacting assets/number of ability to invest in new infrastructure wind strength & regimes, storminess connections and resilience activities sea level rise, storm surges, coastal Proportion of power users in remote erosion communities Source: CCC analysis.

Notes: Italicised text indicates suggested measures for each outcome

30 MarshMcLennar

© 2023 Marsh & M

Monitoring Adaptation progress

Table 6.1 Progress summary – Energy

	Delivery and Policies and plans		Summary			
Outcome 1: Reduced vulnerability of energy assets to extreme weather	Mixed progress	Partial policies and plans	 Climate change is a consideration in statutory planning applications for new infrastructure and reports submitted under the Adaptation Reporting Power demonstrate progress in some areas. Some specific policies and standards exist to increase asset resilience, such as for flood protection of substations. There is a need for minimum resilience standards and a clearer climate resilience remit for regulators. Some progress in flood resilience, but more information is needed for other hazards, including heat and drought. 			
Outcome 2: System level security of supply	Mixed progress	Limited policies and plans	 Government has committed to a decarbonised, secure energy supply by 2035 and acknowledged the need for resilience, but there is no defined standard for system level resilience and delivery challenges remain. More research is needed to understand possible climate impacts on the energy system, and this must be integrated into system design and investment processes. 			
Outcome 3: Interdependencies identified and managed	Unable to evaluate	Insufficient policies and plans	 Coverage of interdependency risks has improved in some adaptation plans but this remains an area of significant challenge. It is not possible to assess progress in delivery across the whole energy system due to a lack of data for generators. 			

Relevant risks from CCRA3:

Risks to infrastructure networks (water, energy, transport, ICT) from cascading failures (I1); risks to infrastructure services from river, surface water and groundwater flooding (I2); risks to infrastructure services from coastal flooding and erosion (I3); risks to bridges and pipelines from flooding and erosion (I4); risks to hydroelectric generation from low or high river flows (I6); risks to subterranean and surface infrastructure from subsidence (I7); risks to energy generation from reduced water availability (I9); risks to energy from high and low temperatures, high winds, lightning (I10); risks to offshore infrastructure from storms and high waves (I11); risks and opportunities from summer and winter household energy demand (H6).

(d) Recommendations to close policy gaps

Table 6.2 provides a set of targeted recommendations to close key outstanding policy gaps identified within this sector.

Recommendations					
Primary responsibility	Recommendation				
DESNZ	Conduct a review of governance arrangements for resilience to climate hazards in the energy system, to ensure they are fit for the new expanded and more diverse low-carbon system given increasing societal reliance on electricity.	2024			
DESNZ	Designate Ofgem and parties responsible now and in the future (including the new Future System Operator) for the maintenance of energy sector codes and standards, with a clear mandate to ensure climate and weather resilience.	2024			
FSO	Ensure that future system design explicitly plans for the range of climate hazards that will face the energy system over its lifetime.	Ongoing			
Cabinet Office	Develop a pathway to setting appropriate minimum resilience standards (both at asset and system level) to relevant climate hazards identified in the UK Climate Change Risk Assessment (CCRA), covering all relevant parties.	2028 late:			
Ofgem	Extend requirements for reporting on outages to include the cause, duration and customers affected for all outages, and collate this as a national indicator.	2024			
Defra	Mandate reporting on climate risk and adaptation plans by all generators, network operators and regulators under the Adaptation Reporting Power.	2023			
Defra	Coordinate a systematic assessment of risks posed from cascading impacts across multiple sectors due to failures of the decarbonised energy system as part of the next round of the Adaptation Reporting Power.	2025			
DESNZ	Commission further research to improve understanding of how climate change is altering key weather hazards that will impact the energy system.	Ongoing			

The adaptation toolbox

Engineered

Structural measures to control water and reduce the potential impacts of flooding

Nature-based

The restoration, preservation, and management of natural capital (e.g., ecosystem protection and soil rehabilitation)

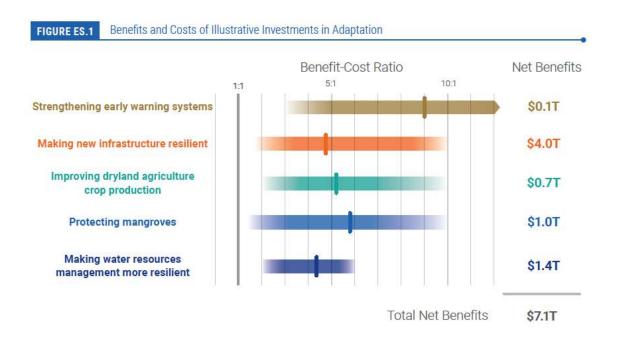
Policies and regulations

Building codes, mandatory resilience standards, risk disclosure requirements, and others

Risk transfer

Traditional insurance and reinsurance, and innovative risk transfer solutions (e.g., parametrics, risk pools)

R&D and data Advancements in risk analytics, modelling, monitoring, and forecasting



Behavioral

Risk information sharing, evacuation training, supply chain diversification, and others

Although society has a **portfolio of risk management tools at its disposal**, many of these tools are **currently underutilized, underfunded or inefficiently implemented**, while in developing countries, availability and affordability present key challenges.

The costs and benefits of adaptation

Source: Global Commission on Adaptation, 2019

		RCP4.5		RCP8.5		
Impact Type	No Adapt	Reactive	Proactive	No Adapt	Reactive	Proactive
8. Substation Transformer Lifespan	\$5.4	\$2.6	\$0.5	\$8.8	\$5.5	\$1.5
6. Vegetation Management	\$3.7	\$3.7	\$3.7	\$6.5	\$6.5	\$6.5
7. Wood Pole Decay	\$1.4	\$0.8	\$0.9	\$2.7	\$1.8	\$1.6
10. Distribution Transformer Lifespan	\$1.2	\$0.8	\$0.8	\$2.4	\$1.4	\$1.4
4. Distribution Line Capacity	\$1.1	\$0.3	\$0.04	\$2.3	\$0.9	\$0.3
1. Transmission Line Capacity	\$0.4	\$0.2	\$0.2	\$0.7	\$0.4	\$0.4
3. Wildfire Damage to Trans Lines	\$0.1	\$0.1	\$0.1	\$0.2	\$0.2	\$0.2
9. Substation SLR and Storm Surge	\$0.07	\$0.07	\$0.01	\$0.14	\$0.14	\$0.01
TOTAL	\$13.4	\$8.5	\$6.2	\$23.7	\$16.9	\$11.9
\$0	Ş	\$2	\$4	\$6	\$8	ç
8. Sub. Transformer Lifespan				-		
6. Vegetation Management						
-						
7. Wood Pole Decay						
7. Wood Pole Decay 4. Distrib. Line Capacity						
-	-	-				
4. Distrib. Line Capacity	-	-				
4. Distrib. Line Capacity 10. Distrib. Transfomer Lifespan						

Source: Fant et.al. (2020): Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure

- **Data needs:** We need to establish a relationship between assets, hazards and damages
 - Hazard data
 - Asset data: locations and valuations
 - Damage curves
 - Macro-economic data, sector indicators elasticity of demand, often difficult to find
 - Adaptation assessment (CAPEX, maintenance costs for each measure, cost of labour etc.)
- Limits of ROI for adaptation: ROI presents information in one easy-to-understand metric; this is part of its appeal, but also, of course, this can prevent consideration of other important features of projects that are not inputs into the ROI calculation. When broader social and environmental benefits are included, the analysis is often termed "social return on investment," or SROI.
- Risk analysis is an important consideration in the RROI concept and underlying CBA approach. Probability event scenarios, the consideration of future probabilities of events, identification of direct and indirect risk exposure, frequency, and magnitude should be incorporated into the RROI assessment.
- **Types of impacts** included in the cost benefit analysis: To establish the total cost of a disaster, its indirect costs also need to be estimated. Calculating both direct and indirect costs in addition to non-economic impacts, is challenging.
- Cost-benefit analyses require the collection of extensive and reliable data, as well as data that are standardized; however, this data collection and organization can be costly. This can certainly be a "road-block" when performing a CBA

We are leaders in risk, strategy and people. One company, with four global businesses, united by a shared purpose to make a difference in the moments that matter.

Marsh GuyCarpenter Mercer OliverWyman

Copyright © 2022 Marsh & McLennan Companies, Inc. All rights reserved.