

AUSTRIA

How Integrated Vegetation Management became an asset and money saver for APG, the Austrian high-voltage grid operator

In the 1990s, Austrian TSO, APG, recognised the value of Integrated Vegetation Management or IVM in reducing the need for vegetation maintenance interventions and supporting biodiversity.

The support of senior management and several collaborative endeavours with scientists and NGOs on the ground have made IVM to a core pillar of APG's operations and a 'calling card' in internal and external communication.

A deep cost analysis over 25 years revealed that the costs of IVM compared to conventional VM are up to 20% lower. Additionally, IVM brings major benefits in terms of thriving biodiversity in their grid corridors and more public support for their infrastructure.

IVM's lower maintenance costs ensured that their programme maintained support and budget even in times of cost-efficiency pressure.

Countless case studies across the grid demonstrate the value for biodiversity. While monitoring is ongoing, APG believes it is well positioned to support national nature restoration goals.

The local benefits created for landowners and small rural companies bring benefits for APG's public image and acceptance of their infrastructure.

FINANCIAL

- For fair cost comparisons, APG extrapolates costs of planning, intervention and monitoring for one hectare.
- IVM can save up to 20% – approx. €200 per ha. compared to conventional management. Savings come from less frequent, less extensive and more targeted actions.
- Pond or meadow creation bring initial spikes in cost, but reduce tree growth and thus bring long-term cost savings.

ENGAGEMENT

- APG communicates proactively with landowners to promote awareness of the benefits of IVM and possible subsidies, e.g. under national or EU schemes.
- APG prioritises contracting smaller, rural service providers for IVM actions for regional benefit creation. This increases their perception among local people and acceptance of their grid projects.

LAW & POLICY

- APG's budget for IVM is reviewed and approved annually.
- In the Electricity and Economic Organisation Law (2010), grid operators are required to conduct activities "with due consideration to environmental protection." The EU Birds and Habitats Directive also provides legal motivation for IVM.

MONITORING

- Biodiversity protection is an essential goal of APG and their parent company, VERBUND. IVM is a key vehicle for realising this goal.
- In areas of high (potential) ecological value, APG develops bespoke IVM plans, often together with ecologists and local NGOs.
- To measure effectiveness of the measures, APG will increase the monitoring cycle in their IVM corridors to every 2-3 years, covering approx. 800ha annually.

KEYS TO SUCCESS

ENGAGEMENT

- From its inception, APG has worked closely with universities, research institutions and NGOs to further improve IVM. Currently they contract eight experts on botany, biology and forestry.
- IVM's benefits for biodiversity are greatly appreciated by the public. Anecdotal evidence from consultations and the field indicate public support for their work.

LAW & POLICY

- Since the cost-effectiveness of IVM was proven, the national regulatory authority has long shown support. APG now invests €1-1.2 million annually in IVM, species conservation projects and projects to preserve biodiversity.
- Top-down institutional support for IVM has been crucial for its acceptance and roll-out to become standard practice in Austria.

DATA & MONITORING

- IVM brings a benefit for APG's sustainability reporting and its benefits are cited within their CSRD reports.
- Baseline studies in pre-construction and operational phases are crucial to track IVM's impact over time. To date, APG has taken survey samples at 95% of the 1070ha where site-specific measures are in place.

FINANCIAL

- IVM is more cost-effective than traditional VM as it relies on the development of stable, self-regulating vegetation structures, making the expensive, recurring clear-cutting of conventional management superfluous.

Did you know?

APG refers to IVM as 'Sustainable Habitat Management' (SHM) and defines two types:

1. Standard IVM (for 5850ha of their grid area), incl. selective removal of fast-growing species; small-scale use of machinery; forest edge enhancement; creation of open areas to connect habitats and site-specific practices.
2. Site-specific practices (for 1070ha of their grid area), incl. dry grassland restoration; pond & wetland restoration; grazing; protected area stewardship; forest edge diversification; nesting structures; deadwood habitats; habitat enhancement and connectivity.

Learn more
about IVM

Renewables
Grid Initiative

Co-funded by
the European Union