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Single and multi-hazard database
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Asset-level Exposure and Vulnerability
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Network failure and disruptions

Flood direct impact simulation
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* Resulting in a better estimation of the
real consequences (and costs) of
disruptions. And helps prioritize
investments. Mengai et al. (in prep)



System-level risk

* Translating service disruptions into
societal impacts.

* Accessibility to local communities
may be low in direct financial costs

but may have large social welfare
costs.

« Moreover, interdependencies

between infrastructure systems are

crucial in post-disaster recovery
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Peregrina et al. (in prep)
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Climate adaptation in a multi-
level context



Overview of multi-level adaptation
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Adaptation Appraisal

8 Asset-level strategies
020 System-level strategies

% Network-level strategies

Avoided Adaptation
Losses Costs

Investment decisions

Adaptation: Intentional change to become more
resilient to present and future hazards

Different ways to adapt are difficult to
compare:
* Hazard-level

Nature-Base Solutions
* Asset-level

Climate-proofing assets
* Network-level

Increased network redundancy
* System-level

Demand-side management
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Asset-level adaptation options
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Network-level adaptation
options

+ Service metrics for service provision -
different ways to measure “Performance’

il

BAM, 2025

* Multi-hazards become especially relevant
for network-level performance (and
adaptation).
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System-level adaptation options

: : : . : ENERGY
* Focusing on improving resilience of the entire STORAGE
system, which includes end-users and T
interdependencies

* As such, links strongly to measures that go
across systems.
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* A key concept here is also moving from asset-
level to a corridor-based implemen‘ta‘tion of 0 2 4 6 8 10 12 14 16 18 20 22 24
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From risk to adaptation appraisal
An example for a railway line
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From risk to adaptation appraisal

An example for a railway line
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Climate adaptation in a multi-
hazard context: an example



Climate adaptation in a multi-hazard context
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Climate adaptation in a multi-hazard context
Past and future flooding, past and future storms

Do nothing
| ., Cost: 0 €
Past flooding Future flooding W Elevate asset

(1/10 years) (1/10 years)

5 \ Bioswales

(:Hj CH:) Cost: 20 €

Y Increasing flood risk is expected = Two adaptation options are identified
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Climate adaptation in a multi-hazard context
Past and future flooding, past and future storms

PSEG Substation
Newark, USA
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Bioswales

. Ekka et al, 2021

e Elevating assets prevents damage from even extreme (1/100 year) floods.
Bioswales can be overwhelmed in extreme events, failing beyond 1/10 year floods



Climate adaptation in a multi-hazard context
Past and future flooding, past and future storms

) Ineffective
Do n?thlng > 110 y: 100 € (destroyed)
Cost: 0 € 1100 y: 100 € (destroyed)

Always effective for floods
Elevateasset — .  1/10 y: O € (protected)
Cost: 30 € 1/100 y: 0 € (protected)

7

|

Effective with minor floods
Bioswales — 1/10 y: O € (protected)

(:uj CH:) Cost: 20 € 1/100 y: 100 € (destroyed)

=

EAD: 14.8 €/y
Benefits: 0 €
BCR: 0

EAD: O €/y
Benefits: 199 €
BCR: 799/350 - ~6.6

EAD: 1.3 €/y
Benefits: 182 €
BCR: 7182/20 = ~9.7

d Even with the residual risk from extreme flooding events, bioswales have better BCR




Climate adaptation in a multi-hazard context
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.. And bioswales provide benefits towards other hazards too...



Climate adaptation in a multi-hazard context
Past and future flooding, past and future storms

Elevate asset Flood-proof asset

Additional EAD (wind): 5.2 €/y Additional EAD (wind): 0 €/y

Single hazard BCR Single hazard BCR: 9.1
Multi-hazard BCR: Multi-hazard BCR: 9.1
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Y This makes bioswales an even more attractive option in this case



Some final words

23



® To move forward, we should mostly think about how to connect all
elements, and what our final metrics (e.g., a Net Present Value) are, not

necessarily building the most complex models that can capture everyone
and everything.

® C(Collaborations are key! We cannot solve this as academics/scientist alone.
Without properly understanding the effectiveness and costs of adaptation,
its hard to truly inform decision-making
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