Paris Agreement compatible scenario for Europe until 2040: leveraging circularity for reflections on supply chain implications

Joni Karjalainen
Energy Transition Analyst
Climate Action Network (CAN) Europe

Closing the Circle: Supply chains and circularity approaches for delivering a decarbonised energy system

Modellers' Exchange Workshop EEB Office, Brussels, Belgium, June 26, 2024

We are fighting dangerous climate change, following scientific findings

◄® LISTEN TO OUR LATEST PODCAST EPISODE

Over 200 member organisations active in 38 European countries, representing over 1.700 NGOs and more than 40 million citizens, CAN Europe promotes sustainable climate, energy and development policies throughout Europe

Creating +1.5 C compatible scenario for Europe

What is the Paris Agreement Compatible (PAC) 2.0 project?

At its core, the Scenario is an attempt to construct a Europeanwide energy scenario which is aligned with the Paris Agreement's objective to limit global warming to 1.5°C and which embodies the policy demands of civil society.

- Paris Agreement Compatible (PAC) energy scenario project 2.0 (CAN Europe with RGI, EEB, REN21, 2021-2024)
 - O **Updated EU27 scenario** aggregates 27 national pathways
 - O Also national pathways for each EU27 member-state
- More detailed findings, specialised modelling tools, as a software, use of national data and projections.
- Provides a policy-oriented pathway to climate neutrality 2040, created together with national member organisations, stakeholders and experts, to inform European and national decision-makers.
- This project has been financed by the German Federal Ministry for Economic Affairs and Climate Action with two rounds of grants realised in the timeframe of: 2018-2020 and 2021-2024.

Paris Agreement Compatible (PAC) energy scenario aiming for climate-neutrality in 2040

Scenario-building guided by three major goals for civil society views:

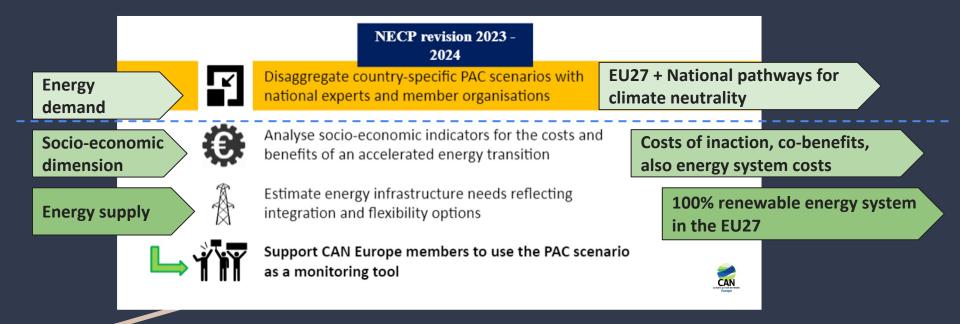
- At least 65% reduction in greenhouse gas emissions by 2030
- 2. Net-zero greenhouse gas emissions by 2040
- 100% renewables in Europe by 2040 in all sectors

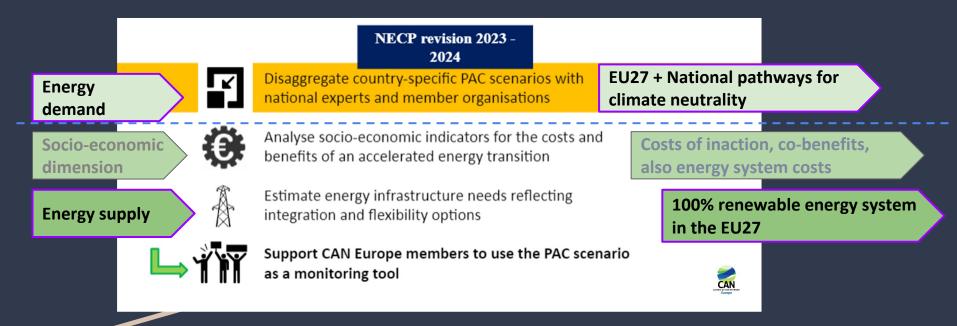
Specific aims and objectives

- Achieving at least 65% GHG emissions reductions on 1990 levels by 2030
- At least 50% renewable energy share in gross final energy consumption in 2030 and 100% in 2040.
- At least 20% energy efficiency in 2030 (compared to 2020 EU Reference Scenario)

- EU-wide coal phase out by 2030
- EU-wide gas phase out by 2035 in the power sector
- EU-wide phase out of fossil oil products by 2040
- Gradual nuclear phase-out by 2040 (in light of existing capacities)
- EU-wide phase out for sale of Internal Combustion Engine (ICE) cars - by 2035

The use of hydrogen as domestically (European) produced, renewable hydrogen (H2). As part of the scenario-building, also land-use change (LULUCF) requirements are acknowledged and modelled.





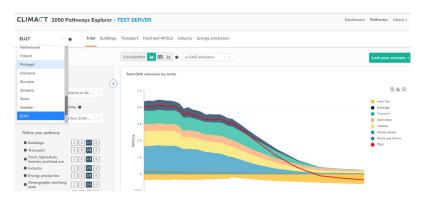
A climate and energy pathway 2040

Coupling demand and supply together, with circularity

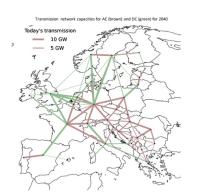
A climate and energy pathway 2040

Coupling demand and supply together, with circularity

Choice of tools for promoting open data and open source: where can we see observe and explore circularity?


Aim to visualise results in a user-friendly manner. Allow anyone to access, explore and interact with the scenario, assumptions, enablers, perspectives, and referenced data in <u>traceable and transparent</u> manner (i.e. promoting <u>"FAIR principles"</u>).


Climate and energy pathways 2040 nationally and for EU27 (demand and supply)

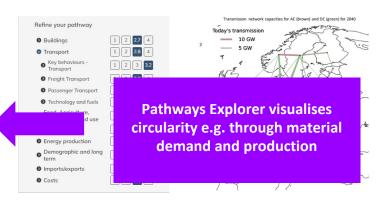

An open data software tool called <u>Pathways Explorer 2050</u>. Any European citizen can explore the levers, the ambition levels, the findings of their country and the EU27, as a visual playground.

The road towards a 100% RES system (supply)

Energy supply and associated infrastructure, illustrated with <u>Python</u> <u>for Power Systems Analysis (PyPSA-Eur)</u>, as an open source tool. For anyone to explore, findings in <u>a dedicated GitHub data repository</u>.

Choice of tools for promoting open data and open source: where can we see observe and explore circularity?

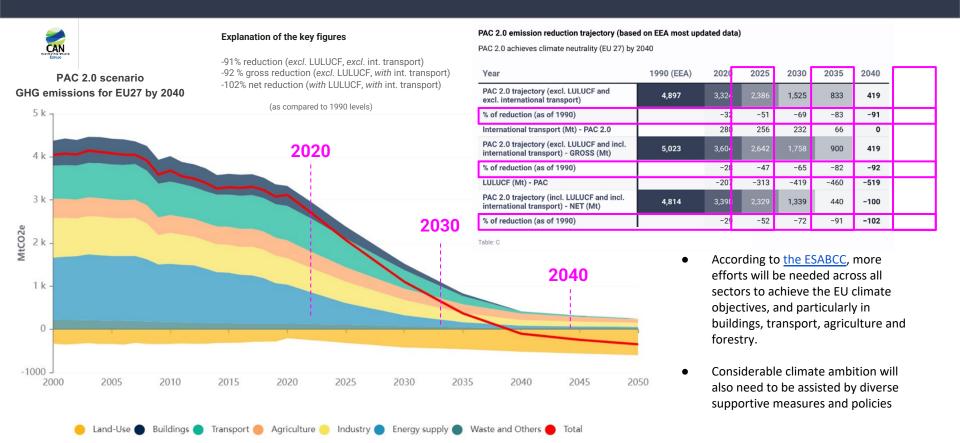
Aim to visualise results in a user-friendly manner. Allow anyone to access, explore and interact with the scenario, assumptions, enablers, perspectives, and referenced data in <u>traceable and transparent</u> manner (i.e. promoting <u>"FAIR principles"</u>).


Climate and energy pathways 2040 nationally and for EU27 (demand and supply)

An open data software tool called <u>Pathways Explorer 2050</u>. Any European citizen can explore the levers, the ambition levels, the findings of their country and the EU27, as a visual playground.

The road towards a 100% RES system (supply)

Energy supply and associated infrastructure, illustrated with <u>Python</u> <u>for Power Systems Analysis (PyPSA-Eur)</u>, as an open source tool. For anyone to explore, findings in <u>a dedicated GitHub data repository</u>.



Our emissions pathway as a 2040 net-zero scenario

Halving energy demand across by 2040 to remain within +1.5 C

"Energy demand reduction scenarios prioritise energy savings and efficiency as the main driver of the transition. These types of scenarios minimise the use of resources and materials, since they aim to reduce the energy demand across sectors drastically."

(ESABCC 2023)

ESABCC (2023): Scientific advice for the determination of an EU-wide 2040 climate target and a greenhouse gas budget for 2030–2050

- In PAC 2.0, final energy consumption (FEC) falls by -25% by 2030, and -51% by 2040 (as per 2020 reference)
- A higher ambition is socio-technical (and even sociocultural), and is helped by changes in how societies, different sectors, and their interactions are organised, as is clear from scientific analyses
- As most experts agree, energy transition is not only about fuel switches. Changing fuels is 'easy'. For societies to be circular and also sustainable takes more.

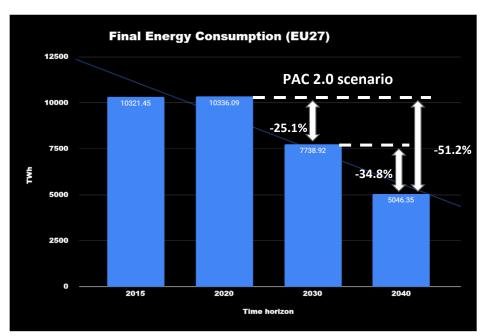


Figure. PAC 2.0 - Final Energy Consumption (EU27) - CAN Europe preliminary analysis. Note: FEC calculation will be updated against new Eurostat methodology (EED 2023).

PAC 2.0 as a systems change scenario 2040

The PAC 2.0 scenario...

Encourage and inspire sustainable lifestyles in Europe

Achieving net zero requires a considerable reduction of the energy demand. This is achieved through changes in social patterns and societal organization, our use of technologies, also going towards circularity.

Perform energy and process improvements to transform buildings, industry and transport for far higher efficiency

Energy efficiency measures coupled with technological progress and process improvements will allow to reduce energy demand and a more sustainable economy.

Accelerate renewables-based electrification for a 100% RES system

Electrification of the processes across all sectors is necessary and needs to be coupled with renewable power production.

Decarbonise what is left

- Fuel switch (bio or e-fuels): for processes that cannot be electrified
- Carbon capture only for limited industrial activities with process emissions (cement,...)
- Reverses land-use change, as natural carbon removal potential is limited

PAC 2.0 as a systems change scenario 2040

The PAC 2.0 scenario... models socio-technical change, with technology switches as well as material switches, and also reflects on their underlying sustainability criteria.

Encourage and inspire sustainable lifestyles in Europe

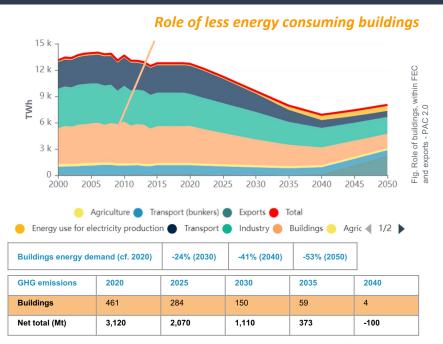
Achieving net zero requires a considerable reduction of the energy demand. This is achieved through changes in social patterns and societal organization, our use of technologies, also going towards circularity.

Perform energy and process improvements to transform buildings, industry and transport for far higher efficiency

Energy efficiency measures coupled with technological progress and process improvements will allow to reduce energy demand and a more sustainable economy.

Accelerate renewables-based electrification for a 100% RES system

Electrification of the processes across all sectors is necessary and needs to be coupled with renewable power production.



Decarbonise what is left

- Fuel switch (bio or e-fuels): for processes that cannot be electrified
- Carbon capture only for limited industrial activities with process emissions (cement,...)
- Reverses land-use change, as natural carbon removal potential is limited

Deep renovations in buildings require access to relevant building materials and talented workforce

Annual renovation rate up to 3% for far more energy-efficient buildings, as deep renovations, with heat pump installations. 75% buildings renovated between now and 2050 (average saving -78%). Electrification from ~35% to ~60%.

PAC 2.0 - Non-residential floor area

Evolution of renovated, non-renovated and new constructed area of the non-residential sector

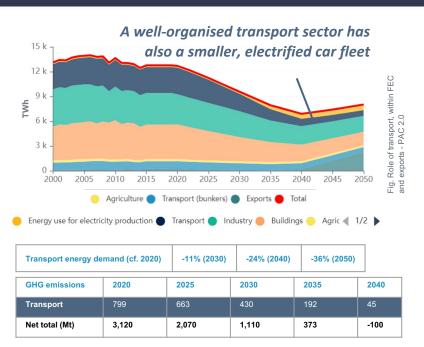

Categories	2020	2025	2030	2035	2040	2045	2050
Renovated area (mio. sq.m.)	186	1,083	2,015	2,967	3,911	4,846	5,772
% of increase		481	982	1,492	1,999	2,500	2,997
Existing area/non-renovated (mio. sq.m.)	7,579	6,639	5,655	4,646	3,639	2,635	1,635
% of decrease		-12	-25	-39	-52	-65	-78
Constructed area (mio. sq.m.)	46	68	98	134	176	224	277
% of increase		49	115	194	286	390	507
Total	7,811	7,789	7,768	7,747	7,726	7,704	7,683
% of change		-0	-1	-1	-1	-1	-2

Table: CAN Europe analysis · Source: Pathways Explorer · Created with Datawrapper

Supply chain implications:

- Available of skilled workforce
- Funding renovations, EU and national funds to
- Increased costs, inflation (e.g. for building materials)
- More than shallow renovations
- Addressing energy poverty, quality of renovation plans

Beyond EVs - Transforming the way we move, also with properly dimensioned and lighter vehicles

PAC 2.0 - Long distance (freight)

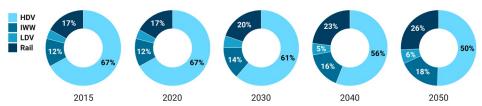
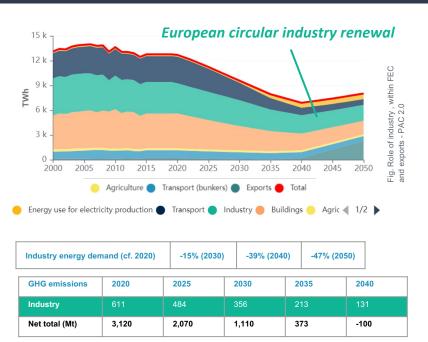


Chart: CAN Europe · Source: Pathways Explorer · Created with Datawrapper


As freight shifts slightly from trucks to rail and shipping, it becomes more environmentally friendly.

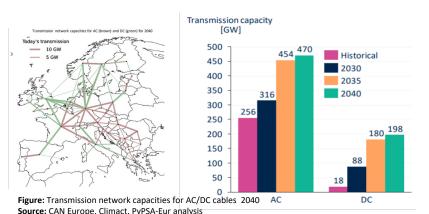
Supply chain implications:

- Slightly lower volumes of goods transported
- > Increased focus on catenary and rail infrastructure
- Droughts could challenge higher use of inland waterways
- Car industry innovation might not favour lighter vehicles

Shift in social patterns and critical infrastructure. Modal shifts, access to good public transport. Rail, marine and aviation sector will be transformed. Higher carsharing and car-pooling. Support shifts away from ICE vehicles.

Circularity for industry renewal - generating new value

Lower waste costs per product, less primary material needed per product, as a rising ecosystem for circularity. Secondary-use shares reach 50% for steel, almost 50% for aluminium, and 60% for paper.

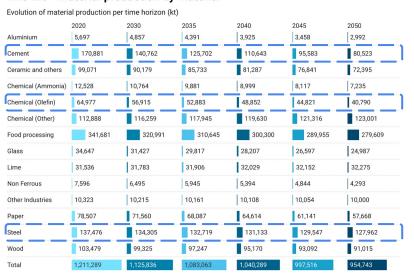

- Circularity and sharing economy for resource efficiency in 100% RES + demand-reduction scenario.
- Circularity emerges as a key feature of Europe's industrial logic by 2040, which implies an increase of secondary, or recycled materials and that fewer primary resources will be needed, as an industrial transformation.

Supply chain implications:

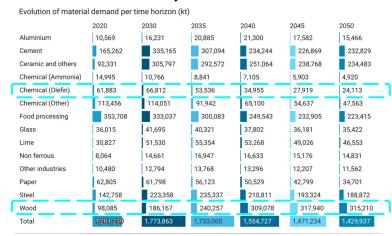
- Substitutes to energy-intensive materials, immediately sourced within EU (wood in construction instead of steel, aluminium and cement, biomass as feedstock for plastics replacing oil
- ➤ H2 as RE H2. Wariness of H2 imports of any origin
- A need to produce less new materials, as creation of new value from circular and sharing patterns
- Anticipate any supply chain disruptions

Towards 100% RES-based electrification with flexible grids

 $\frac{\text{https://caneurope.org/content/uploads/2024/05/Wired-for-Climate-Neutrality}}{\text{Agreement-Compatible-roadmap-for-power-grids.pdf}}$


- 100-120GW annual RES deployment needed (also higher than in proposed EC 2040 targets). Annual RES deployment in EU27 +38-59% compared to 2023 record - or 3x against 2020-2022 average
- Existing power grids to be improved, and more grids needed, as enhanced transmission capacities that accelerate RES deployment and their integration, and address storage needs.
 - o 2030: 404 GW (316 GW in AC, 88 GW in DC cables) +47% (blue)
 - 2035: 634 GW (454 GW in AC, 180 GW in DC) +131% (yellow)
 - 2040: 668 GW (470 GW in AC, 198 GW in DC) +144% (green)
 - Newest studies suggest EV batteries to present a high potential to replace large utility-scale batteries. EV batteries could be repurposed for the grid, rather than recycling them, lowering the pressure on minerals, especially at the end of their lifecycle, as the IEA also recently suggested, which in turn might make economic sense.

Every kilowatt hour saved also means lower capacities for energy production, power transmission, and lower material needs.


Integrating circularity considerations for avoiding resource waste - also with energy transition

As a cross-cutting element to the 2040 pathway, circularity means lower demand for primary materials and resources.

PAC 2.0 - Material production by material

PAC 2.0 - Material demand by material

Charts - CAN Europe - Source: Pathways Explorer - Created with Datawrapper

As a further frontier, we are interested in describing in more detail, how more circular European economies and societies can substitute to more sustainable materials; and a higher use of secondary materials, and to address the needs of the energy transition, to build the new energy infrastructure of the future.

Thank you for your attention!

Closing the Circle: Supply chains and circularity approaches for delivering a decarbonised energy system

PAC Modellers' Exchange Brussels, Belgium, June 26, 2024

Joni Karjalainen, Energy Transition Analyst Dimitris Tsekeris, Energy Scenarios Project Manager

joni.karjalainen@caneurope.org dimitris.tsekeris@caneurope.org

Climate Action Network (CAN) Europe