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Scenarios
towards 2050

 We see potential of offshore
energy hubs from the 2030s

onwards
« Highly dependent on the level
of electrification
* As is all offshore wind in our
results
 Should the hubs be connected to
onshore via transmission lines
or H, pipelines?

* Note: H, demand is assumed
exogenously

M. Koivisto, et al.,
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“Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, “Wind Integration Workshop, 2022
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M. Koivisto, et al., “Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, “Wind Integration Workshop, 2022
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Different offshore infrastructure options in the
energy system optimisation
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1 Radially-connected wind farm #) wind farm
2 Hub-connected wind farm @ Hub

3 Hub-to-hub connection @ H2units

4 Hub-to-shore connection

5 Country-to-country connection Transmission line

-=== H2 pipeline

Also hydrogen storage at the hubs

J. Gea-Bermudez, et al., “Going offshore or not: Where to generate hydrogen in future integrated energy systems?”, Energy Policy, 2023
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Note about modelling:
Large-scale wake losses important to consider

» We want to considered hub size in the
energy system optimisation

« Economies of scale! (+)

* Increasing wake losses? (-)

« Each hub is modeled in detail in

CorRES 5 6 25 35 o 25 5 0 2
« Variation in resource x Tkm] x Lkm] x tkm]
. . . Layouts for 2GW, 12GW and 24GW hubs. Each sub-farm is shown in
» Ramps in detail using sub-farms different color.

« Storm shutdown3

J. Gea-Bermudez, et al., “Optimal generation and transmission development of the North Sea region: impact of grid architecture and planning horizon”, Energy, 2020 (https://doi.org/10.1016/j.energy.2019.116512)

2J. Gea-Bermudez, et al., “The Value of Sector Coupling for the Development of Offshore Power Grids”, Energies, 2022 (https://doi.org/10.3390/en15030747)
3J. P. Murcia Leon, et al., “Power Fluctuations In High Installation Density Offshore Wind Fleets”, Wind Energy Science, 2021. (https://doi.org/10.5194/wes-6-461-2021)
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Note about modelling:
Large-scale wake losses important to consider
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* The red (Modified) curve shows losses when also
the large-scale (mesoscale) wakes are considered

« Significant impact after 2 GW size
* Note: uncertainty remains in estimating wake
losses for very large hubs

* The large-scale wake losses are not
considered in most energy system studies

M. Koivisto, et al., “Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, “Wind Integration Workshop, 2022
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Hubs and transmission lines in the Baltic Sea:
Heat only
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M. Koivisto, et al., “Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, “Wind Integration Workshop, 2022
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Hubs and transmission lines in the Baltic Sea:
Heat & Elec. Mobility
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M. Koivisto, et al., “Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, “Wind Integration Workshop, 2022
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M. Koivisto, et al., “Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, “Wind Integration Workshop, 2022
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Electrolysers and H, pipelines in the Baltic Sea:
All Electrified

o Very high electrification
: scenario

NO3

Installed electrolysers:

2045 (GW)
Baltic Sea region 17
(includes DE)
Onshore 115
Offshore 2

Electrolysers are mostly
installed onshore

* Note: unfeasible small lines may appear in the
maps, as the results are from linear optimisation

* MIP optimisation, to find more realistic line sizes,
is being carried out

M. Koivisto, et al., “Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, “Wind Integration Workshop, 2022
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More sub-scenarios analysed for the North Sea:
All under a highly sector coupled overall scenario

Force the model to build electrolysers only at the offshore hubs.

e

BASE _-7 In OFFH2-HUB4H?2, only H, pipelines from hubs to shore
BASE-H2REDIS

Excess heat from onshore electrolysers cannot be used

" OFFH2 el
|
 OFFH2-HUB4H2 ! ? Offshore caverns enable cheaper H, storage offshore

NOEXCESSHEAT
OFFCAVERN

Different electrolyser cost development assumption

ELYZERCOST :

The assumptions NOEXCESSHEAT, OFFCAVERN, and
ALL <+ ELYZERCOST combined (= pro-offshore H, scenario)
ALL-H2REDIS

H2REDIS = allow for redistribution of the hydrogen demand for
synthetic fuels (aviation and shipping), even at offshore hubs

J. Gea-Bermudez, et al., “Going offshore or not: Where to generate hydrogen in future integrated energy systems?”, Energy Policy, 2023
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= Results (all analysed countries):
Electricity demand and hub-connected wind
Scenario Electricity
Total demand Hub-connected
(TWhe) wind capacity If we force the model to produce
(GWe) H, offshore, we get more offshore
2035 2045 2035 2045 -7 Wind. |
BASE 3959 5220 82 180 -7 Otherwise, the sub-scenarios see
BASE.H2REDIS 3258 5209 77 173 e qu!te similar overall off“shor? wind
OFFHZ 3277 5171 I-].ZT ______ 33g 1 s s bUI|dOUt (although the ALL
OFFH2-HUB4H2 3251 5254 | 11 _2§8_: scenarios see slightly elevated
NOEXCESSHEAT 3307 5294 89 180 level's)
OFFCAVERN 3295 5256 77 174
ELYZERCOST 3250 5140 85 183
ALL 3346 5246 84 197
ALL-H2REDIS 3342 5257 82 186

\ J
|

Electricity demand quite similar in all scenarios

J. Gea-Bermudez, et al., “Going offshore or not: Where to generate hydrogen in future integrated energy systems?”, Energy Policy, 2023
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= Results (all analysed countries):
H, production from offshore
Scenario
Hub-connected Share of hub-connected
electrolyser electrolyser generation in If we force the model to
generation (TWhy) total demand _ produce H, offshore, it
2035 2045 2035 2045 ,7 produces H, offshore
7/
BASE 0 21 0% 2% 7
BASE-H2REDIS 0 9 0% 1% _ 7
OFFH2 336 918 1 100% 100%1 *
OFFH2-HUB4H2 338 962 100% _ _ _ _ _____1 100%'
NOEXCESSHEAT 49 109 15% 10% In the “pro-offshore H,”
OFFCAVERN 7 105 2% 10% scenarios, around 20 % of
iII,IZERCOST gl 327 (1)°5/‘;/ g%/z/ / H2 is produced offshore.
0 0
ALL-H2REDIS 65 228 ‘ 20% 23%

J. Gea-Bermudez, et al., “Going offshore or not: Where to generate hydrogen in future integrated energy systems?”, Energy Policy, 2023
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System costs are higher if we only consider H,
production offshore

N
o

=
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These sub-scenarios force the
model to build electrolysers only

Difference with respect to BASE (b€)
(92}

. _-7 atthe offshore hubs.
-7 In OFFH2-HUB4H2, only H,
s . .
-5 Pie pipelines from hubs to shore
2025 2035 2045 2025 2035 2045 |~
_________________ ”
:_ OFFH2 OFFH2-HUB4H2 :
W CAPEX_H2_GRID m CAPEX_GEN ' O&M_VAR_GEN
B CAPEX_ELEC_GRID m CAPEX_DH_GRID m O&M_FIXED_GEN
m CO2_COST

 Thus, at least an extreme scenario with all H, offshore and all transmission via
pipelines does not seem optimal (from a system perspective)

J. Gea-Bermudez, et al., “Going offshore or not: Where to generate hydrogen in future integrated energy systems?”, Energy Policy, 2023
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What about if offshore wind is much cheaper?

100%
E _— 2045 _
TS ° The BASE level CAPEX values are based on the Danish
D = 70% p Energy Agency’s technology catalogue:
oo © 0 y X . . .
~ 5 A https://ens.dk/en/our-services/projections-and-
T S5 60% : models/technology-data/technology-data-generation-
w (glb 50% electricity-and (as it was available in 2021)
2z
£ 7 40%
° 9
— 30%
o g °
g 20%
& 10%

0%

N O O O O O
590\ ,Qo\ ,00\ ,Qo\ ,Qo\ ,\/Qo\ <—— Offshore wind turbine CAPEX reduction

z

« Offshore H, production significantly increases if offshore wind turbine
CAPEX decreases by more than 30% (in the BASE sub-scenario)

J. Gea-Bermudez, et al., “Going offshore or not: Where to generate hydrogen in future integrated energy systems?”, Energy Policy, 2023
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Conclusions

« Both presented studies favour H, production onshore (versus offshore)
* However, note that the studies share key assumptions and the modelling framework

 Why onshore H, production?
» Onshore electrolysers have lower CAPEX as offshore platform is not needed
 Demand of H, is onshore, so closer to demand
 In our modelling, (onshore) solar PV is a key source of electricity for H, production
» Excess heat can be used in district heating (assuming that this is feasible)
 Availability of offshore caverns can favour offshore H, production

« However, in even the most “pro-offshore H,” scenarios, only around 20 % of H,
production is projected to be offshore (higher shares are seen if offshore wind
CAPEX reduces significantly)

* Note: as there are many uncertainties related to H, infrastructure, it is perfectly
feasible to get very different results compared to what is presented here

« And it may be that having H, production offshore has other benefits not considered
in the presented studies




