

Offshore Power and Hydrogen Networks for Europe's North Sea

Philipp Glaum, Fabian Neumann, Tom Brown

p.glaum@tu-berlin.de

Department of Digital Transformation in Energy Systems

Technical University Berlin

AGENGA Technische Universität Berlin

	Т								N	71			7 1		
			u		LI				W	4 L	44	N Y			

Methodology

1	Introduction and Motivation	
2	Methodology	
3	Study Case	
3	Study Case	

1	Introduction and Motivation	
2	Methodology	
3	Study Case	
4	Results	

 Governments of North Sea committed to install at least 300 GW by 2050¹

- Governments of North Sea committed to install at least 300 GW by 2050¹
- Onshore wind faces acceptance problems²

- Governments of North Sea committed to install at least 300 GW by 2050¹
- Onshore wind faces acceptance problems²
- Research questions:
 - Integration (radial, hybrid connections)
 - Offshore hydrogen production
 - Cost effective potential

 Sector-coupled model PyPSA-Eur to optimise operation and investment

 Sector-coupled model PyPSA-Eur to optimise operation and investment

- Sector-coupled model PyPSA-Eur to optimise operation and investment
- Improved features
 - Wind turbine cost model
 - Floating wind
 - Wake effect modelling
 - Offshore regions in higher resolution
 - Offshore network options

Turbine cost model from Danish Energy Agency¹ depending on:

 Water depth, rotor diameter, capacity, hub height

Fixed-Bottom Offshore Wind Cost Model

Turbine cost model from Danish Energy Agency¹ depending on:

 Water depth, rotor diameter, capacity, hub height

Floating wind turbines:

- Waters deeper than 60m
- Uniform cost of 2300 €/kW²

Turbine cost model from Danish Energy Agency¹ depending on:

 Water depth, rotor diameter, capacity, hub height

Floating wind turbines:

- Waters deeper than 60m
- Uniform cost of 2300 €/kW²

Consider wake effects for offshore wind turbines

Offshore regions modelled in higher resolution

Offshore regions modelled in higher resolution

Offshore network candidates

 Every offshore regions has own offshore connection point

Offshore regions modelled in higher resolution

Offshore network candidates

- Every offshore regions has own offshore connection point
- Possible to interconnect as meshed network, or just connect to shore by point-to-point connection

European energy system

- European energy system
- Sector-coupled (residential, transport, industry, agriculture)

- European energy system
- Sector-coupled (residential, transport, industry, agriculture)
- Carbon-neutral setting

- European energy system
- Sector-coupled (residential, transport, industry, agriculture)
- Carbon-neutral setting
- 64 onshore for 33 countries and 66 offshore nodes in North Sea

- European energy system
- Sector-coupled (residential, transport, industry, agriculture)
- Carbon-neutral setting
- 64 onshore for 33 countries and 66 offshore nodes in North Sea
- 3-hourly resolution for one year

- European energy system
- Sector-coupled (residential, transport, industry, agriculture)
- Carbon-neutral setting
- 64 onshore for 33 countries and 66 offshore nodes in North Sea
- 3-hourly resolution for one year
- Green field expansion (except existing transmission grid and hydropower)

48 models by varying 4 parameters:

Offshore network

Offshore network

Meshed

Point-topoint (P2P)

48 models by varying 4 parameters:

- Offshore network
- Offshore hydrogen production

Offshore network Meshed Point-topoint (P2P)

Offshore hydrogen

Available

Not available

48 models by varying 4 parameters:

- Offshore network
- Offshore hydrogen production
- Onshore transmission limit

Offshore network

Meshed

Point-to-point (P2P)

Offshore hydrogen Available

Not available

Transmission capacity

100 %

110 %

130 %

optimal

48 models by varying 4 parameters:

- Offshore network
- Offshore hydrogen production
- Onshore transmission limit
- Onshore wind potential

Offshore network
Meshed
Point-to-

point (P2P)

Offshore hydrogen
Available
Not available

Transmission capacity

100 %

110 %

130 %

optimal

Onshore wind potential

2.2 TW (25 %)

4.4 TW (50 %)

8.8 TW (100 %)

48 models by varying 4 parameters:

- Offshore network
- Offshore hydrogen production
- Onshore transmission limit
- Onshore wind potential

Offshore network Meshed Point-topoint (P2P)

Offshore hydrogen Available

Not available

capacity
100 %
110 %
130 %

optimal

Transmission

Onshore wind potential

2.2 TW (25 %)

4.4 TW (50 %)

8.8 TW (100 %)

48 combinations

Study Case Technische Universität Berlin

We choose 4 main scenarios:

Offshore network	Offshore hydrogen		Onshore wind potential			
Point-to-point (P2P)	Not available					
Point-to-point (P2P)	Available	ontimal	2 2 TM (25 06)			
Meshed	Not available	optimal	2.2 TW (25 %)			
Meshed	Available					

Total cost with
 P2P power network is
 800 bn €/a

System Cost for optimal transmission and 2.2 TW onshore wind potential

- Total cost with
 P2P power network is
 800 bn €/a
- Benefit of meshed power network of 4 bn €

System Cost for optimal transmission and 2.2 TW onshore wind potential

- Total cost with
 P2P power network is
 800 bn €/a
- Benefit of meshed power network of 4 bn €
- Introducing offshore hydrogen provides an additional benefit of 11 bn €

System Cost for optimal transmission and 2.2 TW onshore wind potential

 Offshore wind capacities in North Sea from 311-424 GW

- Offshore wind capacities in North Sea from 311-424 GW
- With offshore hydrogen

- Offshore wind capacities in North Sea from 311-424 GW
- With offshore hydrogen
 - 60-90 GW more wind integration

- Offshore wind capacities in North Sea from 311-424 GW
- With offshore hydrogen
 - 60-90 GW more wind integration
 - For P2P, model builds more pipelines than power transmission, for meshed vice versa

- Offshore wind capacities in North Sea from 311-424 GW
- With offshore hydrogen
 - 60-90 GW more wind integration
 - For P2P, model builds more pipelines than power transmission, for meshed vice versa
- 2/3 wind energy converted to H₂

P2P power and w/o off. H2 network with optimal transmission and 2.2 TW onshore wind potential

 P2P power lines have uniform utilization rates

Results

P2P power and w/o off. H2 network with optimal transmission and 2.2 TW onshore wind potential

- P2P power lines have uniform utilization rates
- Plenty of power production in North Sea (20 % of total)

Results

- P2P power lines have uniform utilization rates
- Plenty of power production in North Sea (20 % of total)
- Much is used for hydrogen production onshore

Results

- P2P power lines have uniform utilization rates
- Plenty of power production in North Sea (20 % of total)
- Much is used for hydrogen production onshore
- System build TYNDP project "NorthConnect"

Results Techni University

 Main transmission corridors from UK to BE, NL and DE

Results Technische Universität Berlin

- Main transmission corridors from UK to BE, NL and DE
- More offshore wind integration in remote areas

- Main transmission corridors from UK to BE, NL and DE
- More offshore wind integration in remote areas
- Onshore landing connections have higher utilization rates

- Main transmission corridors from UK to BE, NL and DE
- More offshore wind integration in remote areas
- Onshore landing connections have higher utilization rates
- Offshore grid replaces "NorthConnect"

Results Technische Universität Berlin

- Main transmission corridors from UK to BE, NL and DE
- More offshore wind integration in remote areas
- Onshore landing connections have higher utilization rates
- Offshore grid replaces "NorthConnect"
- Total demand: 9800 TWh_{el}

methanolisation

methanolisation

H2 for industry

land transport fuel cell

Total H₂ demand
 2900 TWH_{H2}

Fischer-Tropsch

H2 electrolysis

methanolisation

 No onshore electrolysis from North Sea's power

H2 for industry

land transport fuel cell

Total H₂ demand
 2900 TWH_{H2}

Fischer-Tropsch

H2 electrolysis

- 930 TWH_{H2} in Spain

H2 for industry

- No onshore electrolysis from North Sea's power
- Total H₂ demand 2900 TWH_{H2}

Fischer-Tropsch

- 930 TWH_{H2} in Spain
- 830 TWH_{H2} North Sea

methanolisation

H2 for industry

land transport fuel cell

- No onshore electrolysis from North Sea's power
- Total H₂ demand
 2900 TWH_{H2}

Fischer-Tropsch

H2 electrolysis

- 930 TWH_{H2} in Spain
- 830 TWH_{H2} North Sea
- Biggest pipelines capacities towards DE and NL

 Decreasing benefits with higher transmission capacity and onshore wind potential

- Decreasing benefits with higher transmission capacity and onshore wind potential
- Onshore potential has a greater impact on system cost

Key Takeaways Technische Universität Berlin

 Model opts for a mix of meshed power and H₂ network (15 bn€/a system benefits)

Key Takeaways Technische Universität Berlin

- Model opts for a mix of meshed power and H₂ network (15 bn€/a system benefits)
- Availability of offshore hydrogen more important than only meshed power network due to high power system cost (4 vs. 11 bn€/a system benefits)

Key TakeaWays Technische Universität Berlin

- Model opts for a mix of meshed power and H₂ network (15 bn€/a system benefits)
- Availability of offshore hydrogen more important than only meshed power network due to high power system cost (4 vs. 11 bn€/a system benefits)
- Up to 400 GW cost effective wind potential

Key TakeaWays Technische Universität Berlin

- Model opts for a mix of meshed power and H₂ network (15 bn€/a system benefits)
- Availability of offshore hydrogen more important than only meshed power network due to high power system cost (4 vs. 11 bn€/a system benefits)
- Up to 400 GW cost effective wind potential
- Limited onshore wind potential has a stronger impact than onshore transmission capacity

Key TakeaWays Technische Universität Berlin

- Model opts for a mix of meshed power and H₂ network (15 bn€/a system benefits)
- Availability of offshore hydrogen more important than only meshed power network due to high power system cost (4 vs. 11 bn€/a system benefits)
- Up to 400 GW cost effective wind potential
- Limited onshore wind potential has a stronger impact than onshore transmission capacity
- North Sea has sufficient potential (370 GW fixedbottom and 1000 GW floating) to replace large amounts of onshore wind generation

THANK YOU!

Questions?

Pre-Print:

Limitations

- Only DC system for North Sea
- Since model is linear, we cannot model discrete decisions which may lead to unrealistic investment decisions
- Non-linear power flows are simplified
- Did not consider ecological constraints or other obstacles for offshore infrastructure

Cost Assumptions Technische Universität Berlin

Technology	Value	Unit
HVDC overhead cable	430	€/MW/km
HVDC submarine cable	960	€/MW/km
Offshore HVDC platform	600	€/kW
Hydrogen pipeline	226	€/MW/km
Hydrogen submarine pipeline	329	€/MW/km
Electrolysis onshore	400	€/kW
Electrolysis offshore	440	€/kW
Floating offshore wind	2100	€/kW
Nearshore offshore wind (constant)	1250	€/kW
Far offshore wind (constant)	1600	€/kW

Offshore Topology Modeling

Hydrogen platform with electrolysis and desalination

DC platform with substation

Optimal Generation Capacities

Capacities for optimal transmission and 2.2 TW onshore wind potential

Meshed Power Network

Meshed power and w/o off. H2 network with optimal transmission and 2.2 TW onshore wind potential

P2P Power and Hydrogen Networks

Electricity Prices

Meshed power and meshed H2 network with optimal transmission and 2.2 TW onshore wind potential

Electrolysis Full Load Hours

Offshore Network Utilization

Electricity Balance

Hydrogen Balance

