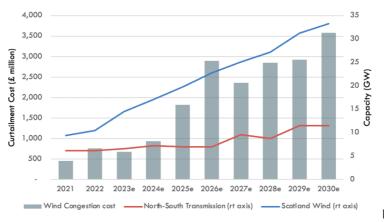




### The Impact of Spatial Scale on Offshore Expansion


Turning the Tide: Optimising Europe's Offshore Energy Future with Holistic Planning and Engagement

Dr. Martha Maria Frysztacki | April, 25th 2024



# **Challenge I: Unresolved Grid Bottlenecks cause Grid Congestion**







Introduction •oooo Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

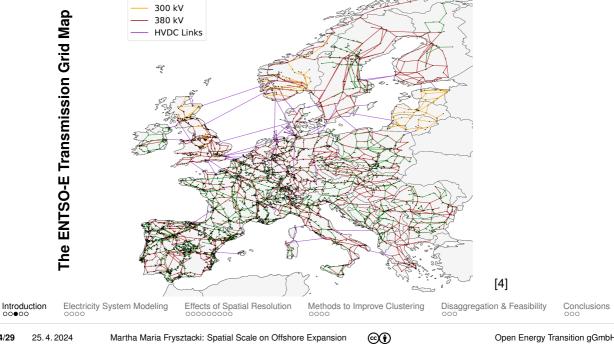
Disaggregation & Feasibility

#### "Optimal" Investments made using spatially low-resolved models





- "Langfristszenarien" [2] commissioned by BMWK; Model: Enertile v5 (1 node per country, except 6 nodes for Germany)
- "Deutschland auf dem Weg zur Klimaneutralität 2045" [3] commissioned by BMBF; comparing 4 models REMIND (1 node for Germany), energyANTS (high spatial coverage for technologies), REMod (Germany, "multi-node" possible) & TIMES PanEU (EU27+3, 1 node for Germany)


Introduction 00000

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility



220 kV

## Challenge II: Conflicts between Resource & Transmission Planners



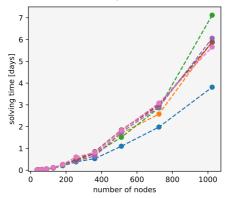


Source: Telos Energy, Presentation uploaded to LinkedIn

Introduction

Electricity System Modeling

Effects of Spatial Resolution


Methods to Improve Clustering

Disaggregation & Feasibility

# **Challenge III: Limited Computational Resources for Combined Planning**



Experimental resource requirements to solve the European Grid and Resource Model using Gurobi [5], [6].



Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

## How to Make Investment Decisions for Renewable Technologies?













Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility



Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance



$$\min_{\substack{G_{V,s}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm}}} \left[ \sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left( c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \sum_{f(v,w),t} c_{V,v} \right] \right]$$

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in \mathcal{T}} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

[7], [8]



Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance





$$\min_{\substack{G_{v,s}, H_{v,r} \\ g_{v,s,t}, h_{v,r,t}^{\pm} \\ f_{(v,w),t}}} \left[ \sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left( \frac{c_{v,s} G_{v,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{v,r} H_{v,r} + \right. \right.$$

[7], [8]

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in T} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

 $\Theta(\mathbf{\hat{I}})$ 

Disaggregation & Feasibility



Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance







$$\min_{\substack{G_{V,s}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm}}} \left[ \sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left( c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \right. \right]$$

[7], [8]

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in \mathcal{T}} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility



Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance



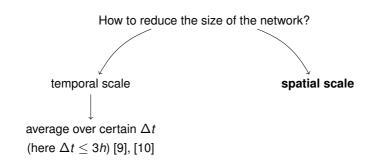


$$\min_{\substack{G_{V,s}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm} \\ f_{(V,w),t}}} \left[ \sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left( c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \right. \right.$$

[7], [8]

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in T} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

Introduction 00000 Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility



### Solution: Reduce the Representation of the Model?



Introduction

9/29

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

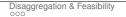
Disaggregation & Feasibility

Conclusions

25.4.2024

## **Research Questions**




| Section                          | Research Questions | Answers |  |
|----------------------------------|--------------------|---------|--|
| Effects of Spatial Resolution    | 1                  |         |  |
| Methods to<br>Improve Clustering | g                  |         |  |
| Disaggregation                   |                    |         |  |

| Landard all continues |
|-----------------------|
| Introduction          |
|                       |
|                       |

& Feasibility



**(•)** 





#### Energy Transition from the creators of PyPSA meets Earth

#### **Research Questions**

| Section                          | Research Questions                                                                                                                             | Answers |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Effects of<br>Spatial Resolution | <ol> <li>How does spatial resolution<br/>impact modeling investments?</li> <li>What are the driving forces<br/>for the differences?</li> </ol> |         |
| Methods to<br>Improve Clustering |                                                                                                                                                |         |

Disaggregation

& Feasibility

0000

Electricity System Modeling





Methods to Improve Clustering

Conclusions

Disaggregation & Feasibility

Introduction

000000000

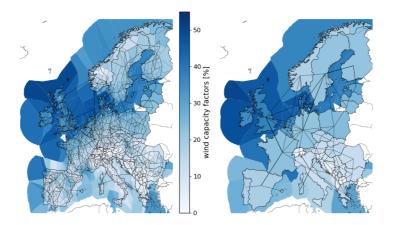
Effects of Spatial Resolution

# Open Energy Transition from the creators of PyPSA meets Earth

#### **Research Questions**

| Section                          | Research Questions                                                                                                                             | Answers |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Effects of<br>Spatial Resolution | <ol> <li>How does spatial resolution<br/>impact modeling investments?</li> <li>What are the driving forces<br/>for the differences?</li> </ol> |         |
| Methods to<br>Improve Clustering | <ul><li>3. Are there better ways to cluster the model?</li><li>4. Which methods are best for offshore planning?</li></ul>                      |         |

Disaggregation


& Feasibility



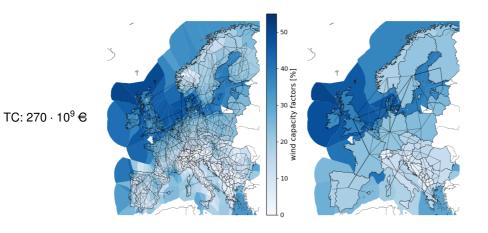


#### **Research Questions**

| _ | Section                            | Res         | earch Questions                                                                                      | Answe                         | ers                          |             |
|---|------------------------------------|-------------|------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------|
|   | Effects of<br>Spatial Resolution   | i<br>2. \   | How does spatial resolu<br>mpact modeling investr<br>What are the driving for<br>or the differences? | nents?                        |                              |             |
| - | Methods to<br>Improve Clustering   | 4. <b>\</b> | Are there better ways to cluster the model? Which methods are besoffshore planning?                  | t for                         |                              |             |
| - | Disaggregation<br>& Feasibility    | а           | Oo the different results in inverted spatially high                                                  | •                             |                              |             |
|   | oduction Electricity System M ooo● | odeling     | Effects of Spatial Resolution                                                                        | Methods to Improve Clustering | Disaggregation & Feasibility | Conclusions |



Introduction


11/29

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

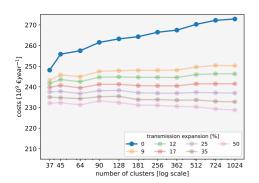
Disaggregation & Feasibility



TC: 248 · 10<sup>9</sup> €

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

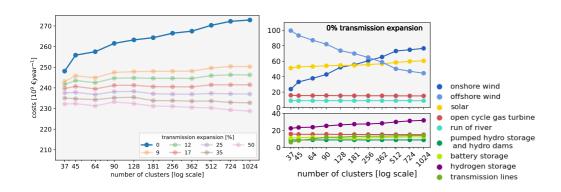
## **Spatial Resolution Impacts Optimal Solution of the Model**





Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

### **Spatial Resolution Impacts Optimal Solution of the Model**





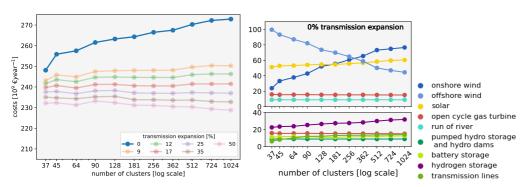
Introduction

12/29

Electricity System Modeling

Effects of Spatial Resolution 00000000

Methods to Improve Clustering


Disaggregation & Feasibility

Conclusions

25.4.2024

### **Spatial Resolution Impacts Optimal Solution of the Model**

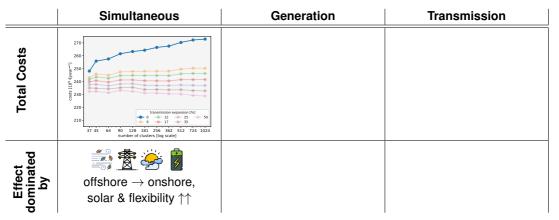




What modeling effects drive these results?

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

# Methods and Experimental Setup to Disentangle Effects of Spatial Resolution

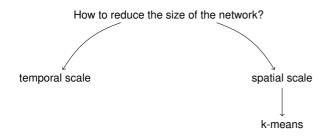




contents of this Chapter are based on [6] Martha Maria Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. "The strong effect of network resolution on electricity system models with high shares of wind and solar". In: Applied Energy 291 (2021), p. 116726. ISSN: 0306-2619. DOI: doi.org/10.1016/j.apenergy.2021.116726

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

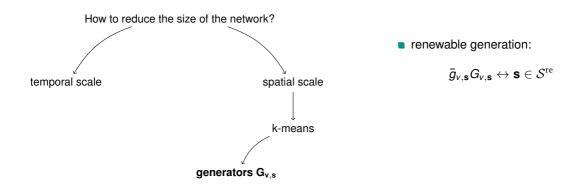
#### Disentangle Spatial Representation of Renewables and Transmission Grid





Introduction

**Electricity System Modeling** 


Effects of Spatial Resolution 00000000

Methods to Improve Clustering

Disaggregation & Feasibility

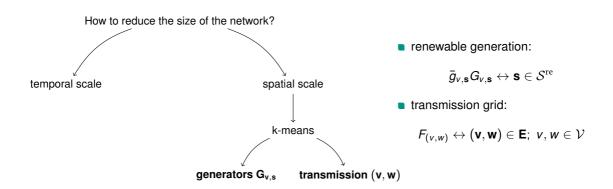
## Disentangle Spatial Representation of Renewables and Transmission Grid





Introduction

Electricity System Modeling


Effects of Spatial Resolution

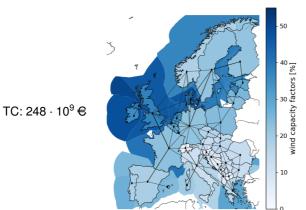
Methods to Improve Clustering

Disaggregation & Feasibility

#### Disentangle Spatial Representation of Renewables and Transmission Grid






Introduction

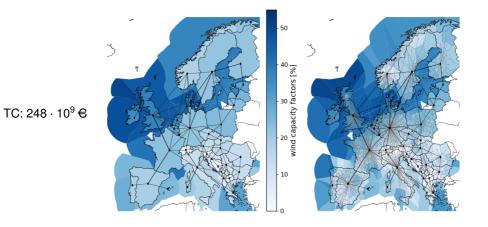
Electricity System Modeling

Effects of Spatial Resolution 00000000

Methods to Improve Clustering

Disaggregation & Feasibility




Introduction

Electricity System Modeling

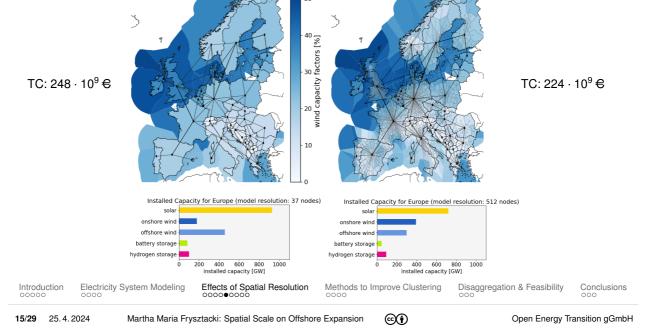
Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

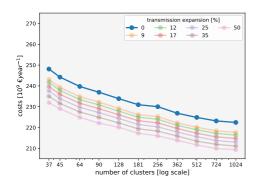


TC: 224 · 10<sup>9</sup> €


Introduction

Electricity System Modeling

Effects of Spatial Resolution


Methods to Improve Clustering

Disaggregation & Feasibility



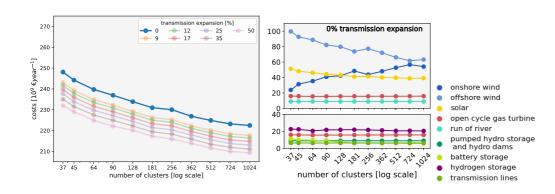
# Spatially Highly-Resolved Renewable Generation Drives Down System Costs by 10%





Introduction

Electricity System Modeling


Effects of Spatial Resolution

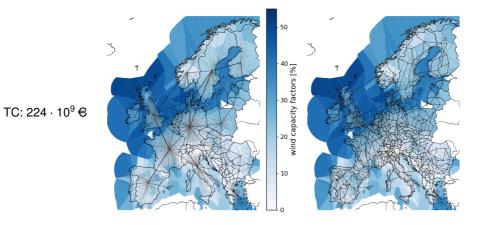
Methods to Improve Clustering

Disaggregation & Feasibility

# Spatially Highly-Resolved Renewable Generation Drives Down System Costs by 10%






Introduction

Electricity System Modeling

Effects of Spatial Resolution

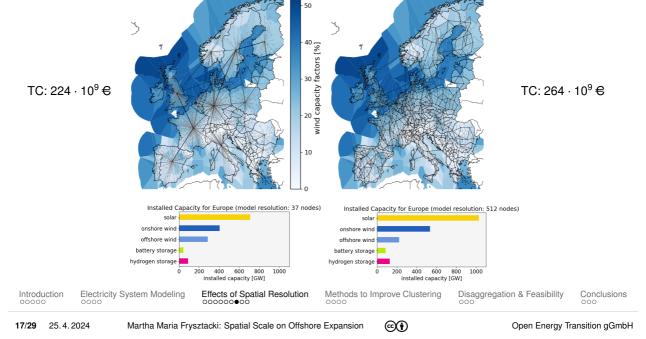
Methods to Improve Clustering

Disaggregation & Feasibility



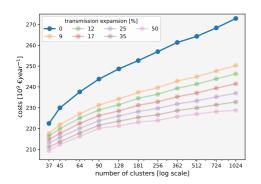
TC: 264 · 10<sup>9</sup> €

Introduction


17/29

Electricity System Modeling

Effects of Spatial Resolution


Methods to Improve Clustering

Disaggregation & Feasibility



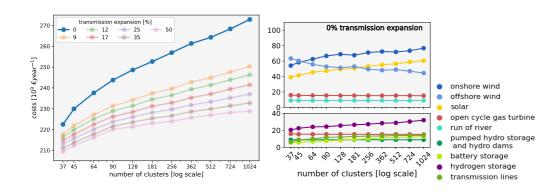
## Low Network Resolution Ignores Congestion and Underestimates Costs by 23%





Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

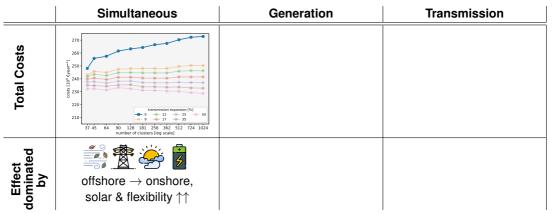
## Low Network Resolution Ignores Congestion and Underestimates Costs by 23%





Introduction

Electricity System Modeling


Effects of Spatial Resolution ○○○○○○●○

Methods to Improve Clustering

Disaggregation & Feasibility

## **Summary: Spatial Effects of Renewable Resources and Transmission Grid Counteract!**

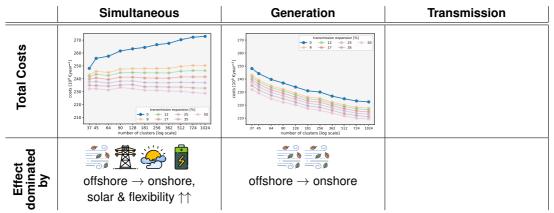




methods contributed to the open-source model PyPSA-EUR [8] https://github.com/PyPSA/pypsa-eur (licence: MIT) data published: Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. Clustering Dataset. DOI: doi.org/10.5281/zenodo.3965780 (license: CC BY 4.0)

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

## **Summary: Spatial Effects of Renewable Resources and Transmission Grid Counteract!**

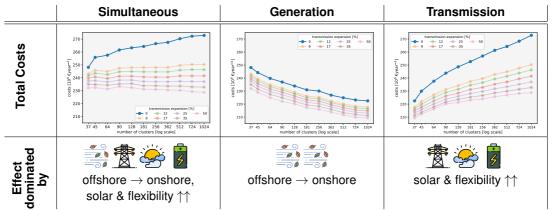




methods contributed to the open-source model PyPSA-EUR [8] https://github.com/PyPSA/pypsa-eur (licence: MIT) data published: Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. Clustering Dataset. DOI: doi.org/10.5281/zenodo.3965780 (license: CC BY 4.0)

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

# Summary: Spatial Effects of Renewable Resources and Transmission Grid Counteract!

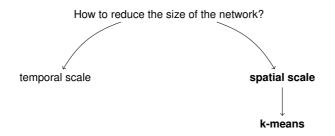




methods contributed to the open-source model PyPSA-EUR [8] https://github.com/PyPSA/pypsa-eur (licence: MIT) data published: Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. Clustering Dataset. DOI: doi.org/10.5281/zenodo.3965780 (license: CC BY 4.0)

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

#### Energy **Transition** from the creators of PyPSA meets Earth

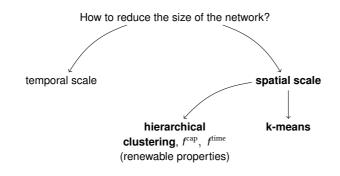
# Can Other Spatial Clustering Methods Improve Results?



contents based on [6] Martha Maria Frysztacki, Gereon Recht, and Tom Brown, "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: Energy Informatics 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering •000

Disaggregation & Feasibility

#### Open Energy Transition from the creators of PyPSA meets Earth

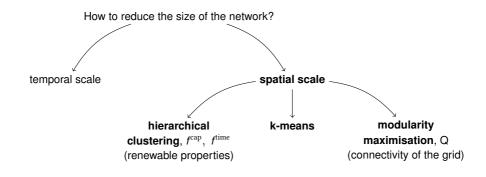
# **Can Other Spatial Clustering Methods Improve Results?**



contents based on [6] Martha Maria Frysztacki, Gereon Recht, and Tom Brown. "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: Energy Informatics 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

# Open Energy Transition from the creators of PyPSA meets Earth

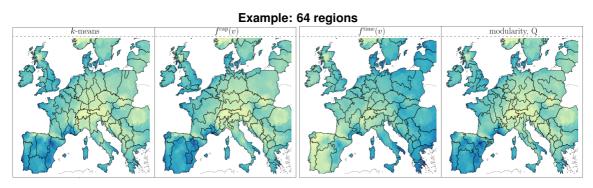
# **Can Other Spatial Clustering Methods Improve Results?**



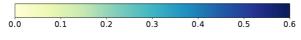
contents based on [6] Martha Maria Frysztacki, Gereon Recht, and Tom Brown. "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: Energy Informatics 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering


Disaggregation & Feasibility

#### Open Energy Transition from the creators of PyPSA meets Earth

# **Resulting Regions Using 4 Different Clustering Methods**



avg. annual capacity factors (wind and solar combined), avg. at 8 o'clock for  $f^{\text{time}}$ 

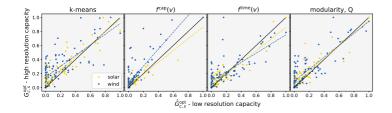


Introduction

21/29

Electricity System Modeling

Effects of Spatial Resolution


Methods to Improve Clustering

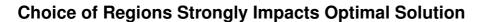
○●○○

Disaggregation & Feasibility

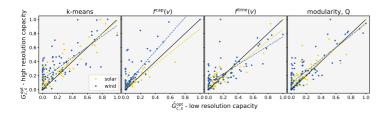


# **Choice of Regions Strongly Impacts Optimal Solution**




Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility







| CO <sub>2</sub> reduction   | ion 100% |       |
|-----------------------------|----------|-------|
| MSE                         | wind     | solar |
| k-means                     | 3.8      | 1.3   |
| $f^{\operatorname{cap}}(v)$ | 2.2      | 0.3   |
| $f^{\text{time}}(v)$        | 2.5      | 0.6   |
| Q                           | 2.3      | 1.0   |

Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

# Hierarchical Methods allow accurate representation of Grid Connectivity & Wind Potentials

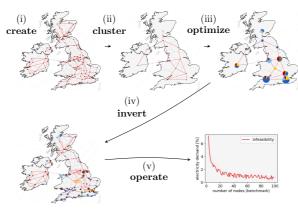


- compared to the presented methods, k-means performs worst: no grid & no resource representation
- HAC methods are best: aggregate only regions ...
  - ... connected by a **transmission** line (possible to include a weighting)
  - ... that are homogeneous in terms of load, on- and offshore profiles

methods contributed to open-source python packages PyPSA [7] https://pypsa.org/(license: MIT) and NetworkX https://networkx.org/ (license: 3-clause BSD), and the open-source model PyPSA-EUR [8] qithub.com/PyPSA/pypsa-eur (license: MIT)

Introduction

Electricity System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

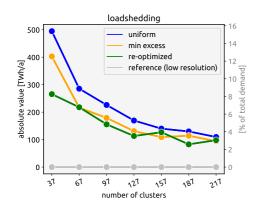
# Inverse Methods: Disaggregate Spatially Low-Resolved Optimisation Results





contents based on [13] Martha Maria Frysztacki, Veit Hagenmeyer, and Tom Brown. "Inverse methods: How feasible are spatially low-resolved capacity expansion modeling results when dis-aggregated at high resolution?" In: submitted to Energy (under review) (2023). DOI:

doi.org/10.48550/arXiv.2209.02364


Introduction Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

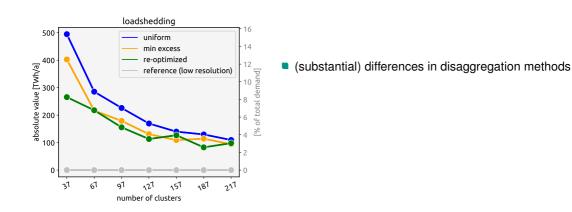
Disaggregation & Feasibility





Introduction

25/29


Electricity System Modeling

Effects of Spatial Resolution

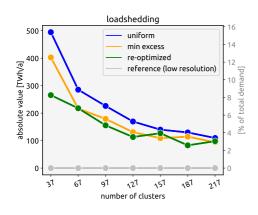
Methods to Improve Clustering

Disaggregation & Feasibility ○●○





Introduction


Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

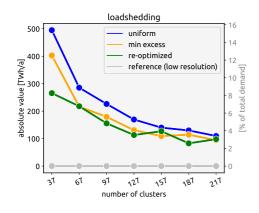
Disaggregation & Feasibility





- (substantial) differences in disaggregation methods
- **37 nodes**: 8 15% of demand can not be met by renewable generation

Introduction


Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility





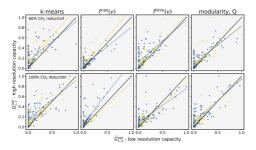
- (substantial) differences in disaggregation methods
- **37 nodes**: 8 − 15% of demand can not be met by renewable generation
- **127 nodes or more**: 3 − 6% of demand can not be met by renewable generation, thereafter improvement is lower

Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering


Disaggregation & Feasibility



## Spatial Clustering Methods Have a Strong Impact on Grid and Resource Planning



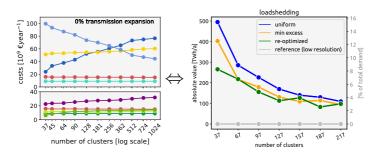
- $\rightarrow$  in contrast to k-means, **hierarchical clustering** accounts for network topology  $\Rightarrow$  better solution
- depending on allowed carbon emissions in the model, use e.g. modularity or renewable feed-in as similarity measure for clustering



Introduction

Electricity System Modeling

Effects of Spatial Resolution


Methods to Improve Clustering

Disaggregation & Feasibility

Conclusions • 0 0

### Low-Resolved Model Results Are Inaccurate and Infeasible

- Open Energy Transition
- Spatially low-resolved model solutions deviate significantly from highly-resolved solutions
- Deviations lead to system configurations that are infeasible at high resolution due to transmission bottlenecks



Introduction

Electricity System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

Conclusions

25.4.2024

### **Research Questions**



|                                                                        | Large impact on technology ratio                                                                                                                                                                                                   |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| impact modeling investments?                                           | Offshore: Onshore 2. Counteracting transmission &                                                                                                                                                                                  |
| 2. What are the driving forces for the differences?                    | generation constraints                                                                                                                                                                                                             |
| 3. Are there better ways to cluster the model?                         | 3. Yes, e.g. hierarchical clustering                                                                                                                                                                                               |
| 4. Which methods are best for offshore planning?                       | <ol> <li>Accurate representation of<br/>on- and offshore potentials</li> </ol>                                                                                                                                                     |
| Do the differences impact an inverted spatially highly-resolved model? | 5. "in-feasibility" or "lost load" depends on reference resolution.                                                                                                                                                                |
|                                                                        | <ul> <li>2. What are the driving forces for the differences?</li> <li>3. Are there better ways to cluster the model?</li> <li>4. Which methods are best for offshore planning?</li> <li>5. Do the differences impact an</li> </ul> |

**(•)** 

#### Literature I



- [1] Britain wastes enough wind generation to power 1 million homes. 2020. URL: https://carbontracker.org/britain-wastes-enough-wind-generation-to-power-1-million-homes/.
- [2] Langfristszenarien und Strategien für den Ausbau der Erneuerbaren Energien in Deutschland unter besonderer Berücksichtigung der nachhaltigen Entwicklung sowie regionaler Aspekte. Tech. rep. Nov. 2022.
- [3] G. Luderer, C. Kost, and D. Sörgel. *Deutschland auf dem Weg zur Klimaneutralität 2045 Szenarien und Pfade im Modellvergleich.* Tech. rep. 2021. DOI: doi.org/10.48485/pik.2021.006.
- [4] European association for the cooperation of transmission system operators (TSOs) for electricity. *Transmission System Map.* 2018. URL: www.entsoe.eu/data/map/.
- [5] Gurobi Optimzation. URL: https://www.gurobi.com/.

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

#### Literature II



- [6] Martha Maria Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. "The strong effect of network resolution on electricity system models with high shares of wind and solar". In: *Applied Energy* 291 (2021), p. 116726. ISSN: 0306-2619. DOI: doi.org/10.1016/j.apenergy.2021.116726.
- [7] Tom Brown, Jonas Hörsch, and David Schlachtberger. "PyPSA: Python for Power System Analysis". In: *Journal of Open Research Software* 6 (2018), p. 4. DOI: https://doi.org/10.5334/jors.188.
- [8] Jonas Hörsch, Fabian Hofmann, David Schlachtberger, et al. "PyPSA-Eur: An Open Optimisation Model of the European Transmission System". In: *Energy Strategy Reviews* 22.v3 (2018), pp. 207–215. DOI: doi.org/10.1016/j.esr.2018.08.012.
- [9] Leander Kotzur, Peter Markewitz, Martin Robinius, et al. "Impact of different time series aggregation methods on optimal energy system design". In: *Renewable Energy* 117 (2018), pp. 474–487. ISSN: 0960-1481. DOI: 10.1016/j.renene.2017.10.017.

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

#### Literature III



- [10] D.P. Schlachtberger, T. Brown, M. Schäfer, et al. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints". In: Energy 163 (2018), pp. 100–114. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2018.08.070. URL: https://www.sciencedirect.com/science/article/pii/S0360544218316025.
- [11] Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. *Clustering Dataset.* DOI: doi.org/10.5281/zenodo.3965780.
- [12] Martha Maria Frysztacki, Gereon Recht, and Tom Brown. "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: *Energy Informatics* 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7.

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

#### Literature IV



- [13] Martha Maria Frysztacki, Veit Hagenmeyer, and Tom Brown. "Inverse methods: How feasible are spatially low-resolved capacity expansion modeling results when dis-aggregated at high resolution?" In: *submitted to Energy (under review)* (2023). DOI: doi.org/10.48550/arXiv.2209.02364.
- [14] Deutsche Energie-Agentur. DENA-GEBÄUDEREPORT 2022. Zahlen, Daten, Fakten. Tech. rep. 2022.
- [15] Martha Frysztacki and Tom Brown. "Modeling Curtailment in Germany: How Spatial Resolution Impacts Line Congestion". In: 2020 17th International Conference on the European Energy Market (EEM). 2020, pp. 1–7. DOI: https://doi.org/10.1109/EEM49802.2020.9221886.
- [16] J. A. Hartigan and M. A. Wong. "Algorithm AS 136: A K-means clustering algorithm". In: *Applied Statistics* 28.1 (1979), pp. 100–108. DOI: https://doi.org/10.2307/2346830.
- [17] Joe H. Ward Jr. "Hierarchical Grouping to Optimize an Objective Function". In: *Journal of the American Statistical Association* 58.301 (1963), pp. 236–244. DOI: doi.org/10.1080/01621459.1963.10500845.

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

#### Literature V



[18] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. "Finding community structure in very large networks". In: *Physical Review E* 70 (6 2004), p. 066111. DOI: doi.org/10.1103/PhysRevE.70.066111.

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

 $\Theta(\mathbf{i})$ 





Table: Technology investment costs.

| asset                         | cost | unit     |
|-------------------------------|------|----------|
| onshore wind                  | 1110 | €/kW     |
| offshore wind                 | 1640 | €/kW     |
| solar PV utility              | 425  | €/kW     |
| solar PV rooftop              | 725  | €/kW     |
| open cycle gas turbine        | 400  | €/kW     |
| run of river                  | 3000 | €/kW     |
| HVAC overhead transmission    | 400  | €/(MWkm) |
| HVAC underground transmission | 1342 | €/(MWkm) |
| HVAC subsea transmission      | 2685 | €/(MWkm) |
| HVDC underground transmission | 1000 | €/(MWkm) |
| HVDC subsea transmission      | 2000 | €/(MWkm) |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering





Table: Technology investment costs with 1\$ = 0.7532€.

| asset                     | cost | unit               |
|---------------------------|------|--------------------|
| pumped hydro storage      | 2000 | €/kW               |
| hydro storage             | 2000 | €/kW               |
| battery storage           | 192  | \$/kWh             |
| battery power conversion  | 411  | $kW_{el}$          |
| hydrogen storage          | 11.3 | \$/kWh             |
| hydrogen power conversion | 689  | €/kW <sub>el</sub> |

References

Miscellaneous 0000000000 **Energy System Modeling** 000000

Effects of Spatial Resolution 000000000

Methods to Improve Clustering 00000000000000

**(•)** 

#### Notation I



| Abbrev.                     | Description                                                                        |
|-----------------------------|------------------------------------------------------------------------------------|
|                             | general abbreviations                                                              |
| r                           | technology type (storage)                                                          |
| $\mathcal R$                | set of all storage technologies                                                    |
| S                           | technology type (generators)                                                       |
| ${\mathcal S}$              | set of all generating technologies                                                 |
| $\mathcal{S}^{\mathrm{re}}$ | subset of renewable technologies, $\mathcal{S}^{	ext{re}} \subseteq \mathcal{S}$   |
| t                           | time discretization                                                                |
| $\mathcal T$                | set of all time-steps t                                                            |
| $\mathcal{V}$               | set of all original nodes in the network graph ${\cal G}$                          |
| (v, w)                      | (highly-resolved) line connecting nodes $v, w \in \mathcal{V}$                     |
| E                           | set of all original lines in the network graph ${\cal G}$                          |
| ${\cal G}$                  | original, fully-resolved network graph, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ |

References

Miscellaneous 0000000000 Energy System Modeling

Effects of Spatial Resolution 000000000

Methods to Improve Clustering 00000000000000

#### Notation II



| K               | number of clusters                                                |
|-----------------|-------------------------------------------------------------------|
| c, d            | clusters, or (low-resolved) nodes                                 |
| $\mathcal{V}_c$ | set of nodes $v \in \mathcal{V}$ , aggregated to form cluster $c$ |
|                 | line attributes                                                   |
| $r_{(v,w)}$     | resistance of transmission line $(v, w)$                          |
| $X_{(v,w)}$     | reactance of transmission line $(v, w)$                           |
| $C_{(v,w)}$     | capital costs of line $(v, w)$                                    |
| $F_{(v,w)}$     | capacity of transmission line $(v, w)$                            |
| $f_{(v,w),t}$   | electricity flow of transmission line $(v, w)$ at time $t$        |

References

Miscellaneous 0000000000 Energy System Modeling

Effects of Spatial Resolution 000000000

Methods to Improve Clustering

**(•)** 

#### **Notation III**



|                     | nodal attributes                                            |
|---------------------|-------------------------------------------------------------|
| $x_v, y_v$          | coordinates of node <i>v</i>                                |
| $G_{v,s}$           | cost-optimal capacity of technology s in node v             |
| $H_{v,r}$           | cost-optimal capacity of technology r in node v             |
| $C_{V,S}$           | capital costs of technology s in node v                     |
| $C_{V,r}$           | capital costs of technology $r$ in node $v$                 |
| $o_{v,s,t}$         | variable costs of technology $s$ in node $v$ and time $t$   |
| $ar{g}_{v,s,t}$     | capacity factor for renewable technology s in time t        |
| $g_{v,s,t}$         | dispatch in node $v$ of generator $s$ in time $t$           |
|                     | graph related attributes                                    |
| $\mathcal{A}_{v,w}$ | (weighted) adjacency matrix of the network graph ${\cal G}$ |
| $k_{v}$             | (weighted) degree of node $v \in \mathcal{V}$               |
|                     |                                                             |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

# Aggregation rules I



| attribute             | aggregated attribute | mapping                                                                                   | values<br>or units |
|-----------------------|----------------------|-------------------------------------------------------------------------------------------|--------------------|
| latitude & longitude  | $(x_c, y_c)^T$       | $\frac{1}{ \mathcal{V}_c }\sum_{v\in\mathcal{V}_c}(x_v,y_v)^T$                            | $\mathbb{R}^2$     |
| power capacity        | $G_{c,s}$            | $\sum_{oldsymbol{v}\in\mathcal{V}_c}ar{G}_{oldsymbol{v},oldsymbol{s}}$                    | MW                 |
| installable potential | $G_{c,s}^{ m max}$   | $\sum_{oldsymbol{v} \in \mathcal{V}_c}^{oldsymbol{G}_{oldsymbol{v},oldsymbol{s}}^{\max}}$ | MW                 |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

**(•)** 

## **Aggregation rules II**



| attribute            | agg.<br>attribute | mapping                                                           | values or units |
|----------------------|-------------------|-------------------------------------------------------------------|-----------------|
| length               | $I_{(c,d)}$       | $\min_{(v,w)\in E_{(c,d)}} I_{(v,w)}$                             | km              |
| power capacity       | $F_{(c,d)}$       | $\sum_{(v,w)\in E_{(c,d)}} F_{(v,w)}$                             | MVA             |
| length<br>underwater | $u_{(c,d)}$       | $\frac{1}{l_{(c,d)}}\sum_{(v,w)\in E_{(c,d)}} (I\cdot u)_{(v,w)}$ | p.u.            |

References

Miscellaneous 00000000000 **Energy System Modeling** 000000

Effects of Spatial Resolution 000000000

Methods to Improve Clustering 00000000000000

**(•)** 





| attribute                        | agg.<br>attribute                    | mapping                                                 | values<br>or units |
|----------------------------------|--------------------------------------|---------------------------------------------------------|--------------------|
| power capacity                   | $\mathcal{S}_{(c,d)}^{\mathrm{nom}}$ | $\sum_{(v,w)\in E_{(c,d)}} s_{(v,w)}^{\text{nom}}$      | MVA                |
| power capacity maximum           | $\mathcal{S}_{(c,d)}^{\min}$         | $\sum_{(v,w)\in E_{(c,d)}}\mathbf{s}^{\min}_{(v,w)}$    | MVA                |
| power capacity minimum           | $s_{(c,d)}^{\max}$                   | $\sum_{(v,w)\in E_{(c,d)}}\mathbf{S}^{\max}_{(v,w)}$    | MVA                |
| number of parallel lines         | $n_{(c,d)}^{ m parallel}$            | $\sum_{(v,w)\in E_{(c,d)}} n_{(v,w)}^{\text{parallel}}$ | $\mathbb{R}$       |
| terrain factor for capital costs | $t_{(c,d)}$                          | $ E_{(c,d)} ^{-1} \sum_{(v,w) \in E_{(c,d)}} t_{(v,w)}$ | p.u.               |

References

Miscellaneous 00000000000 **Energy System Modeling** 000000

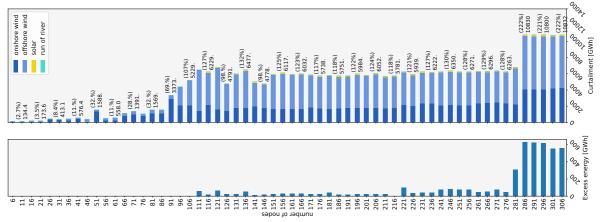
Effects of Spatial Resolution 000000000

Methods to Improve Clustering 00000000000000

# **Final Energy Consumption by Sector**






References

Miscellaneous

Energy System Modeling

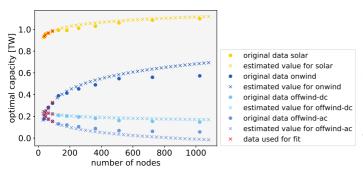
Effects of Spatial Resolution

Methods to Improve Clustering



contents based on [15] Martha Frysztacki and Tom Brown. "Modeling Curtailment in Germany: How Spatial Resolution Impacts Line Congestion". In: 2020 17th International Conference on the European Energy Market (EEM), 2020, pp. 1–7, DOI: https://doi.org/10.1109/EEM49802.2020, 9221886

References


Miscellaneous 00000000000 Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

# **Lessons Learned to Adapt Calibration Methods**





Fit a function to, for example:

$$\mathbf{a} \cdot \log (\mathbf{b} \cdot \mathbf{x}) + \mathbf{c}$$

& pass constraints to optimisation:

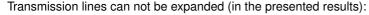
$$\mathbf{G_{v,s}}^{\min} \leq G_{v,s} \leq \mathbf{G_{v,s}}^{\max}$$

References

Miscellaneous 000000000 Energy System Modeling റററ്റ്റ

Effects of Spatial Resolution

Methods to Improve Clustering


### Technology Variables are Subject to Expansion Limits & Restricted Amount of CO<sub>2</sub> (Equivalents)



Expansion of Generators and Storages is subject to upper and lower bounds:

$$\textit{G}_{\textit{v},\textit{s}}^{\min} \leq \textit{G}_{\textit{v},\textit{s}} \leq \textit{G}_{\textit{v},\textit{s}}^{\max} \quad \forall \textit{v} \in \mathcal{V}, \: \textit{s} \in \mathcal{S}^{\text{re}}$$

$$H_{v,r}^{\min} \leq H_{v,r} \leq H_{v,r}^{\max} \quad \forall v \in \mathcal{V}, \ r \in \mathcal{R}.$$



$$F_{(v,w)}^{\min} = F_{(v,w)} \qquad \forall (v,w) \in E.$$



$$\sum_{v \in \mathcal{V}, s \in \mathcal{S}, t \in \mathcal{T}} \frac{1}{\eta_{v,s}} \rho_s w_t g_{v,s,t} \leq \Gamma_{CO_2} \cdot \sum_{z \in \mathcal{Z}} \gamma_z.$$







Miscellaneous

**Energy System Modeling** noñóo

Effects of Spatial Resolution

Methods to Improve Clustering





Expansion of Transmission Lines is subject to a lower bound:



$$F_{(v,w)}^{\min} \leq F_{(v,w)} \quad \forall (v,w) \in E.$$

The upper bound is given as a cumulative cap (measured in MWkm)

$$\sum_{(v,w)\in E} I_{(v,w)} F_{(v,w)} \leq \left(1 + \bar{F}^{\max}\right) \sum_{(v,w)\in E} I_{(v,w)} \cdot F_{(v,w)}^{\min}$$

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering





Generation of conventional generators is bound by their installed capacity



$$0 \leq g_{v,s,t} \leq G_{v,s} \quad \forall v \in \mathcal{V}, \ s \in \mathcal{S}^{\text{con.}}, \ t \in \mathcal{T}.$$

Generation of renewable generators is bound by a weather-related fraction of their installed capacity



$$0 < q_{v,s,t} < \bar{q}_{v,s,t}G_{v,s} \quad \forall v \in \mathcal{V}, s \in \mathcal{S}^{re}, t \in \mathcal{T}.$$

State of charge is bound by the capacity of the storage unit

$$0 \le e_{v,r,t} \le T_r H_{v,r,t} \quad \forall v \in \mathcal{V}, r \in \mathcal{R}, t \in \mathcal{T}.$$

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering



### State of Charge (Storage) Must be Consistent

(Dis)charging of storage units is constraint by their thermal ratings

$$0 \le h_{v,r,t}^+, h_{v,r,t}^- \le H_{v,r} \quad \forall v \in \mathcal{V}, r \in \mathcal{R}, t \in \mathcal{T}.$$

... and must be consistent with its earlier state of charge and operational behaviour while accounting for all efficiencies (charge, discharge, standing, spillage, ...)



$$\begin{split} \boldsymbol{e}_{v,r,t} &= \boldsymbol{w}_t \cdot \left( \eta_{v,r,+} \cdot \boldsymbol{h}_{v,r,t}^+ - \eta_{v,r,-}^{-1} \cdot \boldsymbol{h}_{v,r,t}^- \right) \\ &+ \boldsymbol{w}_t \cdot \left( \boldsymbol{h}_{v,r,t}^{\text{inflow}} - \boldsymbol{h}_{v,r,t}^{\text{spill}} \right) + \eta_{v,r,0}^{\boldsymbol{w}_t} \cdot \boldsymbol{e}_{v,r,t-1} \\ \forall v \in \mathcal{V}, \ r \in \mathcal{R}, \ t \in \mathcal{T} \backslash \{0\} \end{split}$$

Additionally, we require reservoirs to be filled by the end of the year to the same level as they were at the beginning of the year.

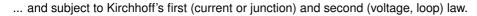
$$e_{v,r,0} = e_{v,r,|\mathcal{T}|} \quad \forall v \in \mathcal{V}, r \in \mathcal{R}.$$

References

Miscellaneous

**Energy System Modeling** 000000

Effects of Spatial Resolution


Methods to Improve Clustering



### Power Flows Must Obey Line Limits and Kirchhoff's Laws

Power flows are constrained by the transmission line capacities minus a 30% security margin

$$|f_{(v,w),t}| \leq 0.7 \cdot F_{(v,w)} \quad \forall (v,w) \in E, \ t \in \mathcal{T}.$$



$$\sum_{w \in \mathcal{V}: \, (v,w) \in E} \mathcal{K}_{v,(v,w)} f_{(v,w),t} = \! d_{v,t} + \sum_{r \in \mathcal{R}} \left( h_{v,r,t}^+ - h_{v,r,t}^- \right) -$$

$$\sum_{s \in \mathcal{S}} g_{v,s,t} \quad \forall v \in \mathcal{V}, \ t \in \mathcal{T}$$

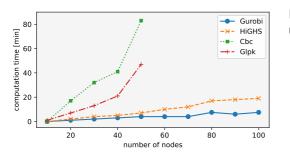
$$\sum_{(v,w)\in c} \mathcal{L}_{(v,w),c} x_{(v,w)} f_{(v,w),t} = 0 \quad \forall t \in \mathcal{T}, \ c \in \mathcal{C}.$$



Miscellaneous

**Energy System Modeling** ററററ്റ്റ

Effects of Spatial Resolution


Methods to Improve Clustering



### Optimisation Model: Computational Resource Requirements to the creators

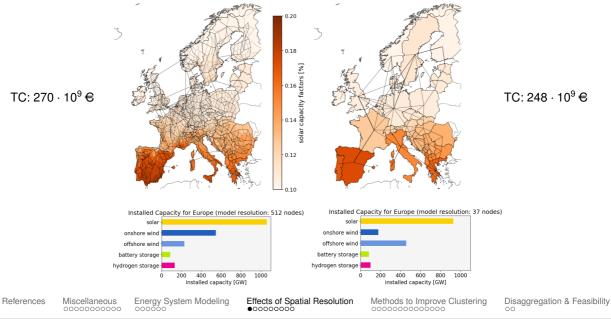


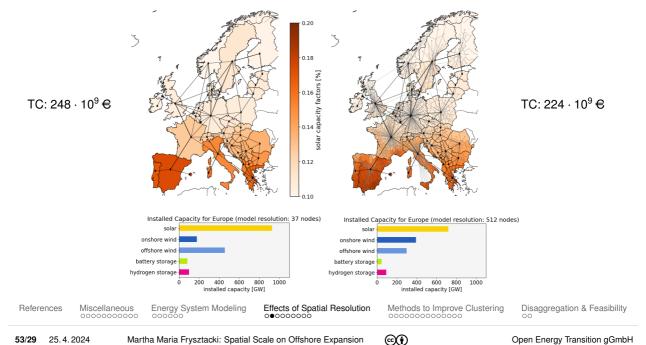
Currently, there does not exist an acceptable open-source solver for such large scale modeling. A promising benchmark of 3 open-source and the commercial solver Gurobi on small PyPSA models:

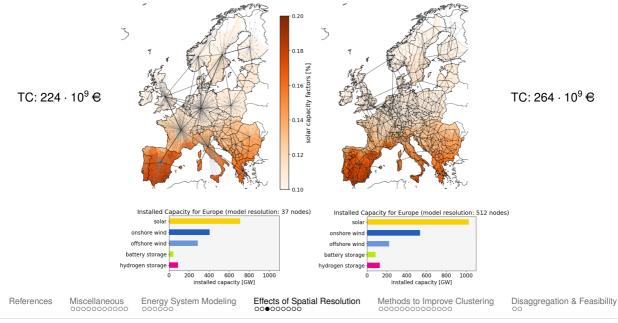


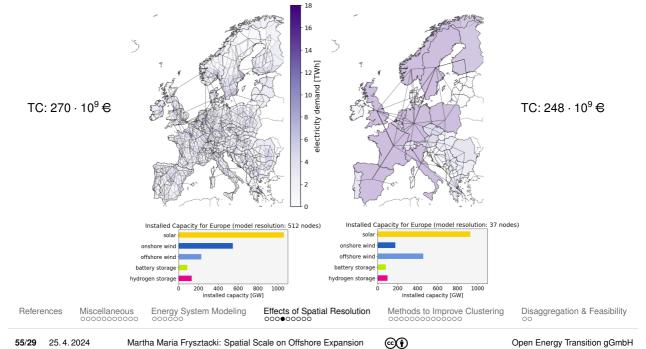
European Electricity Model: implementation in HiGHS unacceptably slow relative to Gurobi. For example:

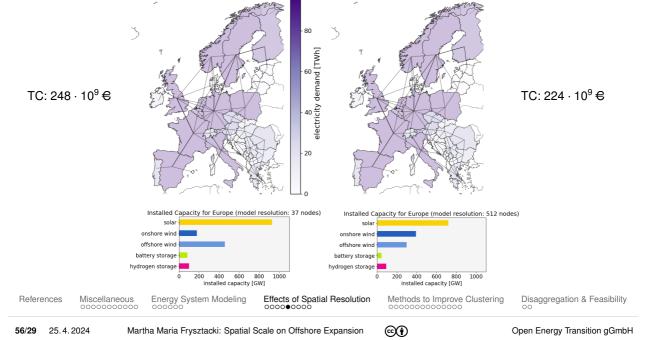
| $ \mathcal{V}  \mid  \mathcal{T} $ |      | ratio [s] |  |
|------------------------------------|------|-----------|--|
| 5                                  | 240  | 4:21      |  |
| 100                                | 240  | 521:1148  |  |
| 5                                  | 8760 | 180:11363 |  |

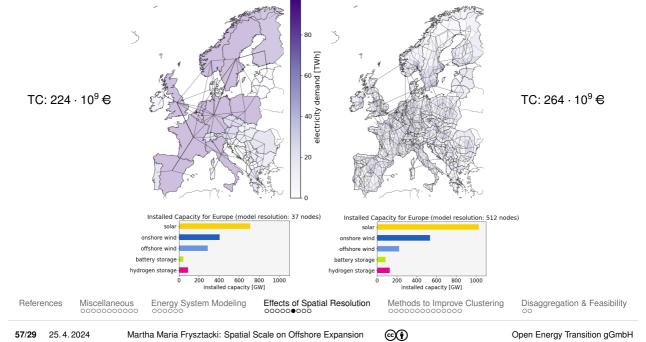

References


Miscellaneous

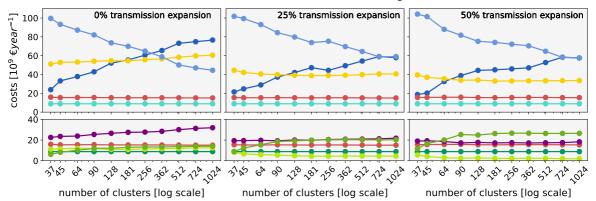

Energy System Modeling


Effects of Spatial Resolution


Methods to Improve Clustering












Case 1: simultaneous clustering



Miscellaneous

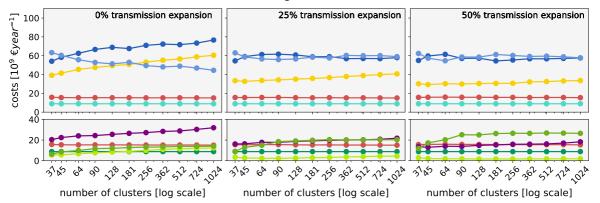
Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Case 2: clustering on siting resolution




Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

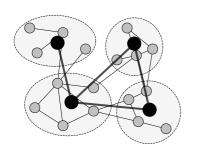
Methods to Improve Clustering

Case 3: clustering on transmission nodes



Miscellaneous

Energy System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

### k-means [16]



#### Problem with k-means: does not see renewable generation or connectivity of the transmission grid



$$\min_{(x_c, y_c)^T \in \mathbb{R}^2} \sum_{c=1}^k \sum_{v \in V_c} w_v \| (x_c, y_c)^T - (x_v, y_v)^T \|_2$$

 $\Theta(\mathbf{i})$ 

# Hierarchical Agglomerative Clustering: Ward's Method [17] from the creators of PyPSA meets Earth



- bottom-up
- initially: each node is its own singleton cluster
- iteration: aggregate two adjacent clusters with most similar feature  $f: \mathcal{V} \mapsto \mathbb{R}^n$  (greedy)
- ⇒ Freedom to choose: "feature" f; ideally incorporating renewable resource availability

#### Our choice:

$$f^{ ext{cap}}(v) := ar{g}_{ extstyle v, s} = egin{pmatrix} ar{g}_{ extstyle v} ext{, solar, } t_1 \ ar{g}_{ extstyle v} ext{, solar, } t_2 \ \dots \ ar{g}_{ extstyle v} ext{, solar, } t_2 \ \dots \ ar{g}_{ extstyle v} ext{, solar, } t_{|\mathcal{T}|} \ ar{g}_{ extstyle v} ext{, wind, } t_1 \ ar{g}_{ extstyle v} ext{, wind, } t_2 \ \dots \ ar{g}_{ extstyle v} ext{, wind, } t_{|\mathcal{T}|} \end{pmatrix}$$

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering 00000000000000

### Clauset-Newman-Moore Greedy Modularity Maximisation [18] the creators of PyPSA meets Earth



- aim: find community structures in (large) networks
- initially: each node is its own sigleton cluster
- iteration: aggregate adjacent clusters that maximise modularity Q most

$$Q = \frac{1}{2m} \sum_{v,w \in \mathcal{V}} \left( A_{v,w} - \frac{k_v k_w}{2m} \right) \delta(c_v, c_w),$$

where

$$\underline{\mathcal{A}_{v,w} := \begin{cases} w_{(v,w)} & \text{if } (v,w) \in E \\ 0 & \text{otherwise} \end{cases}}, \quad \underline{m := \frac{1}{2} \sum_{v,w} \mathcal{A}_{v,w}}, \quad \underline{k_v := \sum_{w} \mathcal{A}_{v,w}}, \quad \underline{\delta(c_v, c_w) := \begin{cases} 1 & \text{if } c_v = c_w \\ 0 & \text{otherwise} \end{cases}}$$

$$weighted \ \textit{adjacency matrix}$$

$$weighted \ \textit{degree of node } v$$

$$weighted \ \textit{degree of node } v$$

and  $w_{(v,w)} := \frac{1}{|z_{(v,w)}|}$  (inverse impedance)

References

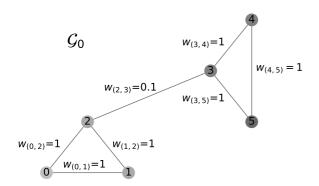
63/29

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering 


 $\Theta(\mathbf{\hat{I}})$ 

Disaggregation & Feasibility

25.4.2024

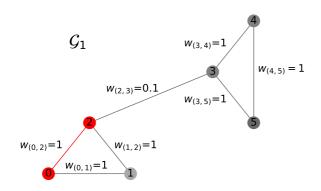


$$\Delta Q(v, w) \sim A_{v,w} - \frac{k_v k_w}{2m}$$



References

Miscellaneous


Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering



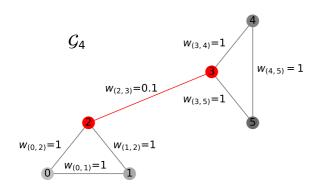
$$\Delta Q(v, w) \sim A_{v,w} - \frac{k_v k_w}{2m}$$



$$\mathcal{A}_{0,2} = 1 > rac{k_0 k_2}{2m} pprox 0.17$$

References

Miscellaneous


**Energy System Modeling** റററ്റ്റ

Effects of Spatial Resolution

Methods to Improve Clustering 

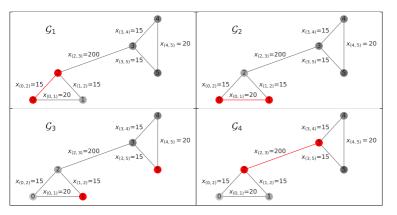


$$\Delta Q(v, w) \sim A_{v,w} - \frac{k_v k_w}{2m}$$



 $A_{2,3} = 0.1 < \frac{k_2 k_3}{2m} \approx 0.18$ 

References


Miscellaneous

**Energy System Modeling** റററ്റ്റ

Effects of Spatial Resolution

Methods to Improve Clustering 





$$\mathcal{G}_1:\mathcal{A}_{0,2}pprox 0.067>rac{k_0k_2}{2m}pprox 0.006$$

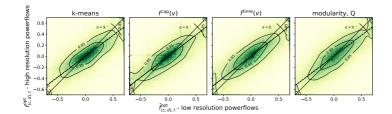
$$\mathcal{G}_2: \mathcal{A}_{0,1} = 0.05 > rac{k_0 k_1}{2m} pprox 0.010$$

$$\mathcal{G}_{3}:\mathcal{A}_{1,5}=0<rac{k_{1}k_{5}}{2m}pprox0.010$$

$$G_4: A_{2,3} = 0.005 < \frac{k_2 k_3}{2m} \approx 0.007$$

References

Miscellaneous


Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

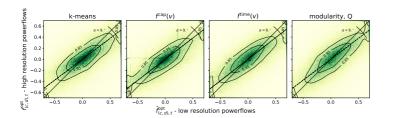
### **Choice of Regions Strongly Impacts Optimal Power Flows**





References

Miscellaneous


Energy System Modeling

Effects of Spatial Resolution

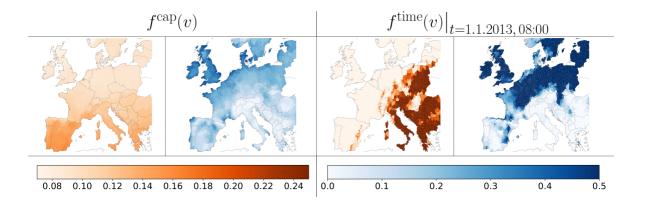
Methods to Improve Clustering

### **Choice of Regions Strongly Impacts Optimal Power Flows**





| CO <sub>2</sub> reduction   | 100%   |
|-----------------------------|--------|
|                             | $\rho$ |
| k-means                     | 0.75   |
| $f^{\operatorname{cap}}(v)$ | 0.76   |
| $f^{\text{time}}(v)$        | 0.78   |
| Q                           | 0.75   |


References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering



Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering



### **Choice of Regions Strongly Impacts Optimal Solution: 67**

| CO <sub>2</sub> reduction   | 60%         |             | 100%        |             |
|-----------------------------|-------------|-------------|-------------|-------------|
| technology                  | wind solar  |             | wind        | solar       |
| k-means                     | 0.33 + 2.65 | 0.01 + 2.34 | 0.22 + 2.43 | 0.25 + 0.71 |
| $f^{\operatorname{cap}}(v)$ | 0.23 + 0.79 | 0.05 + 0.31 | 0.14 + 1.12 | 0.05 + 0.12 |
| $f^{\text{time}}(v)$        | 0.02 + 2.26 | 0.07 + 0.99 | 0.51 + 1.63 | 0.06 + 0.24 |
| Q                           | 0.42 + 1.45 | 0.16 + 0.71 | 0.61 + 1.76 | 0.07 + 0.48 |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering



### **Choice of Regions Strongly Impacts Optimal Solution: 97**

| CO <sub>2</sub> reduction   | 60%                                                   |             | 100%        |             |
|-----------------------------|-------------------------------------------------------|-------------|-------------|-------------|
| MSE                         | wind solar                                            |             | wind        | solar       |
| k-means                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |             | 0.51 + 3.33 | 0.12 + 1.23 |
| $f^{\operatorname{cap}}(v)$ |                                                       |             | 0.01 + 2.22 | 0.11 + 0.15 |
| $f^{\text{time}}(v)$        | 0.04 + 3.17                                           | 0.08 + 0.79 | 0.55 + 1.94 | 0.26 + 0.28 |
| Q                           | 0.36 + 1.31                                           | 0.47 + 1.17 | 0.25 + 1.98 | 0.17 + 0.78 |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

Disaggregation & Feasibility

25.4.2024

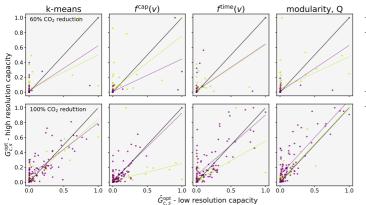


### **Choice of Regions Strongly Impacts Optimal Solution: 127**

| CO <sub>2</sub> reduction   | 60%         |             | 100%        |             |
|-----------------------------|-------------|-------------|-------------|-------------|
| technology                  | wind solar  |             | wind        | solar       |
| k-means                     | 0.42 + 5.34 | 0.06 + 2.17 | 0.51 + 2.22 | 0.21 + 1.03 |
| $f^{\operatorname{cap}}(v)$ | 0.79 + 0.86 | 0.02 + 0.82 | 0.2 + 1.14  | 0.11 + 0.15 |
| $f^{\text{time}}(v)$        | 0.81 + 2.74 | 0.02 + 1.45 | 0.14 + 2.38 | 0.24 + 0.75 |
| Q                           | 0.36 + 1.31 | 0.47 + 1.17 | 0.24 + 2.2  | 0.36 + 1.07 |

References

Miscellaneous


Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering



### **Choice of Regions Strongly Impacts Optimal Solution**



| MSE                         | hydrogen  | battery   |
|-----------------------------|-----------|-----------|
| CO <sub>2</sub> reduction   | 60%       |           |
| k-means                     | 0.6 + 0.2 | 1.0 + 0.7 |
| $f^{\operatorname{cap}}(v)$ | 1.3 + 0.0 | 0.4 + 1.3 |
| $f^{\text{time}}(v)$        | 0.6 + 0.5 | 0.5 + 0.2 |
| Q                           | 0.5 + 0.0 | 0.8 + 1.4 |
| CO <sub>2</sub> reduction   | 100       | )%        |
| k-means                     | 0.7 + 1.5 | 0.2 + 0.3 |
| $f^{\operatorname{cap}}(v)$ | 0.2 + 0.6 | 2.2 + 0.6 |
| $f^{\text{time}}(v)$        | 0.5 + 2.7 | 0.9 + 0.3 |
| Q                           | 0.0 + 2.8 | 0.0 + 0.2 |

References

Miscellaneous

Energy System Modeling 000000

Effects of Spatial Resolution

Methods to Improve Clustering 

### Choice of Regions Strongly Impacts Optimal Power Flows: 67 the creators of PyPSA meets Earth

| CO <sub>2</sub> reduction   | 60%   |                       | 100%   |                       |
|-----------------------------|-------|-----------------------|--------|-----------------------|
|                             | ho    | <i>r</i> <sub>2</sub> | $\rho$ | <i>r</i> <sub>2</sub> |
| k-means                     | 0.704 | 0.188                 | 0.725  | 0.195                 |
| $f^{\operatorname{cap}}(v)$ | 0.754 | 0.174                 | 0.759  | 0.187                 |
| $f^{\text{time}}(v)$        | 0.749 | 0.173                 | 0.765  | 0.181                 |
| Q                           | 0.739 | 0.173                 | 0.740  | 0.187                 |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

### Choice of Regions Strongly Impacts Optimal Power Flows: 97 the creators of PaySA meets Earth

| CO <sub>2</sub> reduction   | 60%           |                       | 100%   |                       |
|-----------------------------|---------------|-----------------------|--------|-----------------------|
|                             | $\rho$        | <i>r</i> <sub>2</sub> | $\rho$ | <i>r</i> <sub>2</sub> |
| k-means                     | r-means 0.746 |                       | 0.755  | 0.175                 |
| $f^{\operatorname{cap}}(v)$ | 0.769         | 0.160                 | 0.768  | 0.173                 |
| $f^{\text{time}}(v)$        | 0.767         | 0.160                 | 0.781  | 0.169                 |
| $Q^{-1}$                    | 0.757         | 0.164                 | 0.757  | 0.179                 |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering

### Choice of Regions Strongly Impacts Optimal Power Flows: 12 Treators of PyPSA meets Earth

| CO <sub>2</sub> reduction   | 60%   |                       | 100%   |       |
|-----------------------------|-------|-----------------------|--------|-------|
|                             | ho    | <i>r</i> <sub>2</sub> | $\rho$ | $r_2$ |
| k-means                     | 0.735 | 0.164                 | 0.772  | 0.166 |
| $f^{\operatorname{cap}}(v)$ | 0.802 | 0.144                 | 0.786  | 0.163 |
| $f^{\text{time}}(v)$        | 0.782 | 0.147                 | 0.808  | 0.152 |
| Q                           | 0.789 | 0.152                 | 0.792  | 0.165 |

References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering



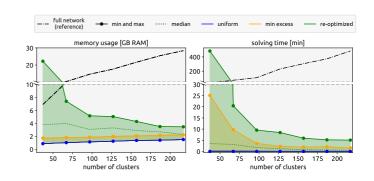
### Disaggregation is Not Unique: 3 Approaches

| Short name  | Method description                                                                                                   | Formula                                                                                                                                                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optimal I   | low-resolved capacities are distributed                                                                              |                                                                                                                                                                                                                                       |
| uniform     | uniformly across all nodes within a cluster                                                                          | $G_{c,s} \mapsto rac{1}{ \mathcal{V}_c } egin{pmatrix} G_{c,s} \ \ G_{c,s} \end{pmatrix} \in \mathbb{R}^{ \mathcal{V}_c }$                                                                                                           |
| re-optimize | anew by re-optimising capacities within each cluster & enforcing build-out capacity totals per technology and region | objective + constraints + $\sum_{v \in \mathcal{V}_c} G_{v,s} = G_{c,s}$                                                                                                                                                              |
| min excess  | according to the objective to concentrate generation at nodes with higher demand and grid capacity                   | $\begin{aligned} & \min_{G_{v,s}} \sum_{s \in \mathcal{S}, t \in \mathcal{T}} \left[ \bar{g}_{v,s,t} G_{v,s} - \right. \\ & d_{v,t} - 0.7 \sum_{\substack{l_{(v,w)} \in E: \\ v = c \lor w = c}} F_{(v,w)} \right]^{+} \end{aligned}$ |

References

Miscellaneous

Energy System Modeling


Effects of Spatial Resolution

Methods to Improve Clustering

## Accuracy of Disaggregation Balances Computational Requirements



|             | Implementation | Solving Time | Memory (RAM) | Results Quality |
|-------------|----------------|--------------|--------------|-----------------|
| uniform     | 1              | 1            | 1            | X               |
| min excess  | X              | 1            | 1            | 1               |
| re-optimize | X              | X            | X            | 1               |



References

Miscellaneous

Energy System Modeling

Effects of Spatial Resolution

Methods to Improve Clustering