The Impact of Spatial Scale on Offshore Expansion Turning the Tide: Optimising Europe's Offshore Energy Future with Holistic Planning and Engagement Dr. Martha Maria Frysztacki | April, 25th 2024 # **Challenge I: Unresolved Grid Bottlenecks cause Grid Congestion** Introduction •oooo Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility #### "Optimal" Investments made using spatially low-resolved models - "Langfristszenarien" [2] commissioned by BMWK; Model: Enertile v5 (1 node per country, except 6 nodes for Germany) - "Deutschland auf dem Weg zur Klimaneutralität 2045" [3] commissioned by BMBF; comparing 4 models REMIND (1 node for Germany), energyANTS (high spatial coverage for technologies), REMod (Germany, "multi-node" possible) & TIMES PanEU (EU27+3, 1 node for Germany) Introduction 00000 Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility 220 kV ## Challenge II: Conflicts between Resource & Transmission Planners Source: Telos Energy, Presentation uploaded to LinkedIn Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # **Challenge III: Limited Computational Resources for Combined Planning** Experimental resource requirements to solve the European Grid and Resource Model using Gurobi [5], [6]. Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ## How to Make Investment Decisions for Renewable Technologies? Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility Objective: minimise the total system cost that consist of - investment costs in new generation projects - investment costs in new storage capacity - investment costs in new transmission line projects - variable costs, such as costs for fuels or maintenance $$\min_{\substack{G_{V,s}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \sum_{f(v,w),t} c_{V,v} \right] \right]$$ $$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in \mathcal{T}} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$ Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility [7], [8] Objective: minimise the total system cost that consist of - investment costs in new generation projects - investment costs in new storage capacity - investment costs in new transmission line projects - variable costs, such as costs for fuels or maintenance $$\min_{\substack{G_{v,s}, H_{v,r} \\ g_{v,s,t}, h_{v,r,t}^{\pm} \\ f_{(v,w),t}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(\frac{c_{v,s} G_{v,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{v,r} H_{v,r} + \right. \right.$$ [7], [8] $$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in T} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$ Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering $\Theta(\mathbf{\hat{I}})$ Disaggregation & Feasibility Objective: minimise the total system cost that consist of - investment costs in new generation projects - investment costs in new storage capacity - investment costs in new transmission line projects - variable costs, such as costs for fuels or maintenance $$\min_{\substack{G_{V,s}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \right. \right]$$ [7], [8] $$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in \mathcal{T}} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$ Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility Objective: minimise the total system cost that consist of - investment costs in new generation projects - investment costs in new storage capacity - investment costs in new transmission line projects - variable costs, such as costs for fuels or maintenance $$\min_{\substack{G_{V,s}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm} \\ f_{(V,w),t}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \right. \right.$$ [7], [8] $$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in T} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$ Introduction 00000 Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ### Solution: Reduce the Representation of the Model? Introduction 9/29 Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility Conclusions 25.4.2024 ## **Research Questions** | Section | Research Questions | Answers | | |----------------------------------|--------------------|---------|--| | Effects of Spatial Resolution | 1 | | | | Methods to
Improve Clustering | g | | | | Disaggregation | | | | | Landard all continues | |-----------------------| | Introduction | | | | | & Feasibility **(•)** #### Energy Transition from the creators of PyPSA meets Earth #### **Research Questions** | Section | Research Questions | Answers | |----------------------------------|--|---------| | Effects of
Spatial Resolution | How does spatial resolution
impact modeling investments? What are the driving forces
for the differences? | | | Methods to
Improve Clustering | | | Disaggregation & Feasibility 0000 Electricity System Modeling Methods to Improve Clustering Conclusions Disaggregation & Feasibility Introduction 000000000 Effects of Spatial Resolution # Open Energy Transition from the creators of PyPSA meets Earth #### **Research Questions** | Section | Research Questions | Answers | |----------------------------------|--|---------| | Effects of
Spatial Resolution | How does spatial resolution
impact modeling investments? What are the driving forces
for the differences? | | | Methods to
Improve Clustering | 3. Are there better ways to cluster the model?4. Which methods are best for offshore planning? | | Disaggregation & Feasibility #### **Research Questions** | _ | Section | Res | earch Questions | Answe | ers | | |---|------------------------------------|-------------|--|-------------------------------|------------------------------|-------------| | | Effects of
Spatial Resolution | i
2. \ | How does spatial resolu
mpact modeling investr
What are the driving for
or the differences? | nents? | | | | - | Methods to
Improve Clustering | 4. \ | Are there better ways to cluster the model? Which methods are besoffshore planning? | t for | | | | - | Disaggregation
& Feasibility | а | Oo the different results in inverted spatially high | • | | | | | oduction Electricity System M ooo● | odeling | Effects of Spatial Resolution | Methods to Improve Clustering | Disaggregation & Feasibility | Conclusions | Introduction 11/29 Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility TC: 248 · 10⁹ € Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ## **Spatial Resolution Impacts Optimal Solution of the Model** Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ### **Spatial Resolution Impacts Optimal Solution of the Model** Introduction 12/29 Electricity System Modeling Effects of Spatial Resolution 00000000 Methods to Improve Clustering Disaggregation & Feasibility Conclusions 25.4.2024 ### **Spatial Resolution Impacts Optimal Solution of the Model** What modeling effects drive these results? Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # Methods and Experimental Setup to Disentangle Effects of Spatial Resolution contents of this Chapter are based on [6] Martha Maria Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. "The strong effect of network resolution on electricity system models with high shares of wind and solar". In: Applied Energy 291 (2021), p. 116726. ISSN: 0306-2619. DOI: doi.org/10.1016/j.apenergy.2021.116726 Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility #### Disentangle Spatial Representation of Renewables and Transmission Grid Introduction **Electricity System Modeling** Effects of Spatial Resolution 00000000 Methods to Improve Clustering Disaggregation & Feasibility ## Disentangle Spatial Representation of Renewables and Transmission Grid Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility #### Disentangle Spatial Representation of Renewables and Transmission Grid Introduction Electricity System Modeling Effects of Spatial Resolution 00000000 Methods to Improve Clustering Disaggregation & Feasibility Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility TC: 224 · 10⁹ € Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # Spatially Highly-Resolved Renewable Generation Drives Down System Costs by 10% Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # Spatially Highly-Resolved Renewable Generation Drives Down System Costs by 10% Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility TC: 264 · 10⁹ € Introduction 17/29 Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ## Low Network Resolution Ignores Congestion and Underestimates Costs by 23% Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ## Low Network Resolution Ignores Congestion and Underestimates Costs by 23% Introduction Electricity System Modeling Effects of Spatial Resolution ○○○○○○●○ Methods to Improve Clustering Disaggregation & Feasibility ## **Summary: Spatial Effects of Renewable Resources and Transmission Grid Counteract!** methods contributed to the open-source model PyPSA-EUR [8] https://github.com/PyPSA/pypsa-eur (licence: MIT) data published: Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. Clustering Dataset. DOI: doi.org/10.5281/zenodo.3965780 (license: CC BY 4.0) Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ## **Summary: Spatial Effects of Renewable Resources and Transmission Grid Counteract!** methods contributed to the open-source model PyPSA-EUR [8] https://github.com/PyPSA/pypsa-eur (licence: MIT) data published: Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. Clustering Dataset. DOI: doi.org/10.5281/zenodo.3965780 (license: CC BY 4.0) Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # Summary: Spatial Effects of Renewable Resources and Transmission Grid Counteract! methods contributed to the open-source model PyPSA-EUR [8] https://github.com/PyPSA/pypsa-eur (licence: MIT) data published: Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. Clustering Dataset. DOI: doi.org/10.5281/zenodo.3965780 (license: CC BY 4.0) Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility #### Energy **Transition** from the creators of PyPSA meets Earth # Can Other Spatial Clustering Methods Improve Results? contents based on [6] Martha Maria Frysztacki, Gereon Recht, and Tom Brown, "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: Energy Informatics 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7 Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering •000 Disaggregation & Feasibility #### Open Energy Transition from the creators of PyPSA meets Earth # **Can Other Spatial Clustering Methods Improve Results?** contents based on [6] Martha Maria Frysztacki, Gereon Recht, and Tom Brown. "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: Energy Informatics 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7 Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # Open Energy Transition from the creators of PyPSA meets Earth # **Can Other Spatial Clustering Methods Improve Results?** contents based on [6] Martha Maria Frysztacki, Gereon Recht, and Tom Brown. "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: Energy Informatics 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7 Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility #### Open Energy Transition from the creators of PyPSA meets Earth # **Resulting Regions Using 4 Different Clustering Methods** avg. annual capacity factors (wind and solar combined), avg. at 8 o'clock for f^{time} Introduction 21/29 Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering ○●○○ Disaggregation & Feasibility # **Choice of Regions Strongly Impacts Optimal Solution** Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility | CO ₂ reduction | ion 100% | | |-----------------------------|----------|-------| | MSE | wind | solar | | k-means | 3.8 | 1.3 | | $f^{\operatorname{cap}}(v)$ | 2.2 | 0.3 | | $f^{\text{time}}(v)$ | 2.5 | 0.6 | | Q | 2.3 | 1.0 | Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # Hierarchical Methods allow accurate representation of Grid Connectivity & Wind Potentials - compared to the presented methods, k-means performs worst: no grid & no resource representation - HAC methods are best: aggregate only regions ... - ... connected by a **transmission** line (possible to include a weighting) - ... that are homogeneous in terms of load, on- and offshore profiles methods contributed to open-source python packages PyPSA [7] https://pypsa.org/(license: MIT) and NetworkX https://networkx.org/ (license: 3-clause BSD), and the open-source model PyPSA-EUR [8] qithub.com/PyPSA/pypsa-eur (license: MIT) Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility # Inverse Methods: Disaggregate Spatially Low-Resolved Optimisation Results contents based on [13] Martha Maria Frysztacki, Veit Hagenmeyer, and Tom Brown. "Inverse methods: How feasible are spatially low-resolved capacity expansion modeling results when dis-aggregated at high resolution?" In: submitted to Energy (under review) (2023). DOI: doi.org/10.48550/arXiv.2209.02364 Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility Introduction 25/29 Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ○●○ Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility - (substantial) differences in disaggregation methods - **37 nodes**: 8 15% of demand can not be met by renewable generation Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility - (substantial) differences in disaggregation methods - **37 nodes**: 8 − 15% of demand can not be met by renewable generation - **127 nodes or more**: 3 − 6% of demand can not be met by renewable generation, thereafter improvement is lower Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility ## Spatial Clustering Methods Have a Strong Impact on Grid and Resource Planning - \rightarrow in contrast to k-means, **hierarchical clustering** accounts for network topology \Rightarrow better solution - depending on allowed carbon emissions in the model, use e.g. modularity or renewable feed-in as similarity measure for clustering Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility Conclusions • 0 0 ### Low-Resolved Model Results Are Inaccurate and Infeasible - Open Energy Transition - Spatially low-resolved model solutions deviate significantly from highly-resolved solutions - Deviations lead to system configurations that are infeasible at high resolution due to transmission bottlenecks Introduction Electricity System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility Conclusions 25.4.2024 ### **Research Questions** | | Large impact on technology ratio | |--|--| | impact modeling investments? | Offshore: Onshore 2. Counteracting transmission & | | 2. What are the driving forces for the differences? | generation constraints | | 3. Are there better ways to cluster the model? | 3. Yes, e.g. hierarchical clustering | | 4. Which methods are best for offshore planning? | Accurate representation of
on- and offshore potentials | | Do the differences impact an inverted spatially highly-resolved model? | 5. "in-feasibility" or "lost load" depends on reference resolution. | | | 2. What are the driving forces for the differences? 3. Are there better ways to cluster the model? 4. Which methods are best for offshore planning? 5. Do the differences impact an | **(•)** #### Literature I - [1] Britain wastes enough wind generation to power 1 million homes. 2020. URL: https://carbontracker.org/britain-wastes-enough-wind-generation-to-power-1-million-homes/. - [2] Langfristszenarien und Strategien für den Ausbau der Erneuerbaren Energien in Deutschland unter besonderer Berücksichtigung der nachhaltigen Entwicklung sowie regionaler Aspekte. Tech. rep. Nov. 2022. - [3] G. Luderer, C. Kost, and D. Sörgel. *Deutschland auf dem Weg zur Klimaneutralität 2045 Szenarien und Pfade im Modellvergleich.* Tech. rep. 2021. DOI: doi.org/10.48485/pik.2021.006. - [4] European association for the cooperation of transmission system operators (TSOs) for electricity. *Transmission System Map.* 2018. URL: www.entsoe.eu/data/map/. - [5] Gurobi Optimzation. URL: https://www.gurobi.com/. References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering #### Literature II - [6] Martha Maria Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. "The strong effect of network resolution on electricity system models with high shares of wind and solar". In: *Applied Energy* 291 (2021), p. 116726. ISSN: 0306-2619. DOI: doi.org/10.1016/j.apenergy.2021.116726. - [7] Tom Brown, Jonas Hörsch, and David Schlachtberger. "PyPSA: Python for Power System Analysis". In: *Journal of Open Research Software* 6 (2018), p. 4. DOI: https://doi.org/10.5334/jors.188. - [8] Jonas Hörsch, Fabian Hofmann, David Schlachtberger, et al. "PyPSA-Eur: An Open Optimisation Model of the European Transmission System". In: *Energy Strategy Reviews* 22.v3 (2018), pp. 207–215. DOI: doi.org/10.1016/j.esr.2018.08.012. - [9] Leander Kotzur, Peter Markewitz, Martin Robinius, et al. "Impact of different time series aggregation methods on optimal energy system design". In: *Renewable Energy* 117 (2018), pp. 474–487. ISSN: 0960-1481. DOI: 10.1016/j.renene.2017.10.017. References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering #### Literature III - [10] D.P. Schlachtberger, T. Brown, M. Schäfer, et al. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints". In: Energy 163 (2018), pp. 100–114. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2018.08.070. URL: https://www.sciencedirect.com/science/article/pii/S0360544218316025. - [11] Martha Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. *Clustering Dataset.* DOI: doi.org/10.5281/zenodo.3965780. - [12] Martha Maria Frysztacki, Gereon Recht, and Tom Brown. "A comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe". In: *Energy Informatics* 5.4 (2022). ISSN: 2520-8942. DOI: doi.org/10.1186/s42162-022-00187-7. References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering #### Literature IV - [13] Martha Maria Frysztacki, Veit Hagenmeyer, and Tom Brown. "Inverse methods: How feasible are spatially low-resolved capacity expansion modeling results when dis-aggregated at high resolution?" In: *submitted to Energy (under review)* (2023). DOI: doi.org/10.48550/arXiv.2209.02364. - [14] Deutsche Energie-Agentur. DENA-GEBÄUDEREPORT 2022. Zahlen, Daten, Fakten. Tech. rep. 2022. - [15] Martha Frysztacki and Tom Brown. "Modeling Curtailment in Germany: How Spatial Resolution Impacts Line Congestion". In: 2020 17th International Conference on the European Energy Market (EEM). 2020, pp. 1–7. DOI: https://doi.org/10.1109/EEM49802.2020.9221886. - [16] J. A. Hartigan and M. A. Wong. "Algorithm AS 136: A K-means clustering algorithm". In: *Applied Statistics* 28.1 (1979), pp. 100–108. DOI: https://doi.org/10.2307/2346830. - [17] Joe H. Ward Jr. "Hierarchical Grouping to Optimize an Objective Function". In: *Journal of the American Statistical Association* 58.301 (1963), pp. 236–244. DOI: doi.org/10.1080/01621459.1963.10500845. References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering #### Literature V [18] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. "Finding community structure in very large networks". In: *Physical Review E* 70 (6 2004), p. 066111. DOI: doi.org/10.1103/PhysRevE.70.066111. References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering $\Theta(\mathbf{i})$ Table: Technology investment costs. | asset | cost | unit | |-------------------------------|------|----------| | onshore wind | 1110 | €/kW | | offshore wind | 1640 | €/kW | | solar PV utility | 425 | €/kW | | solar PV rooftop | 725 | €/kW | | open cycle gas turbine | 400 | €/kW | | run of river | 3000 | €/kW | | HVAC overhead transmission | 400 | €/(MWkm) | | HVAC underground transmission | 1342 | €/(MWkm) | | HVAC subsea transmission | 2685 | €/(MWkm) | | HVDC underground transmission | 1000 | €/(MWkm) | | HVDC subsea transmission | 2000 | €/(MWkm) | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering Table: Technology investment costs with 1\$ = 0.7532€. | asset | cost | unit | |---------------------------|------|--------------------| | pumped hydro storage | 2000 | €/kW | | hydro storage | 2000 | €/kW | | battery storage | 192 | \$/kWh | | battery power conversion | 411 | kW_{el} | | hydrogen storage | 11.3 | \$/kWh | | hydrogen power conversion | 689 | €/kW _{el} | References Miscellaneous 0000000000 **Energy System Modeling** 000000 Effects of Spatial Resolution 000000000 Methods to Improve Clustering 00000000000000 **(•)** #### Notation I | Abbrev. | Description | |-----------------------------|--| | | general abbreviations | | r | technology type (storage) | | $\mathcal R$ | set of all storage technologies | | S | technology type (generators) | | ${\mathcal S}$ | set of all generating technologies | | $\mathcal{S}^{\mathrm{re}}$ | subset of renewable technologies, $\mathcal{S}^{ ext{re}} \subseteq \mathcal{S}$ | | t | time discretization | | $\mathcal T$ | set of all time-steps t | | \mathcal{V} | set of all original nodes in the network graph ${\cal G}$ | | (v, w) | (highly-resolved) line connecting nodes $v, w \in \mathcal{V}$ | | E | set of all original lines in the network graph ${\cal G}$ | | ${\cal G}$ | original, fully-resolved network graph, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ | References Miscellaneous 0000000000 Energy System Modeling Effects of Spatial Resolution 000000000 Methods to Improve Clustering 00000000000000 #### Notation II | K | number of clusters | |-----------------|---| | c, d | clusters, or (low-resolved) nodes | | \mathcal{V}_c | set of nodes $v \in \mathcal{V}$, aggregated to form cluster c | | | line attributes | | $r_{(v,w)}$ | resistance of transmission line (v, w) | | $X_{(v,w)}$ | reactance of transmission line (v, w) | | $C_{(v,w)}$ | capital costs of line (v, w) | | $F_{(v,w)}$ | capacity of transmission line (v, w) | | $f_{(v,w),t}$ | electricity flow of transmission line (v, w) at time t | References Miscellaneous 0000000000 Energy System Modeling Effects of Spatial Resolution 000000000 Methods to Improve Clustering **(•)** #### **Notation III** | | nodal attributes | |---------------------|---| | x_v, y_v | coordinates of node <i>v</i> | | $G_{v,s}$ | cost-optimal capacity of technology s in node v | | $H_{v,r}$ | cost-optimal capacity of technology r in node v | | $C_{V,S}$ | capital costs of technology s in node v | | $C_{V,r}$ | capital costs of technology r in node v | | $o_{v,s,t}$ | variable costs of technology s in node v and time t | | $ar{g}_{v,s,t}$ | capacity factor for renewable technology s in time t | | $g_{v,s,t}$ | dispatch in node v of generator s in time t | | | graph related attributes | | $\mathcal{A}_{v,w}$ | (weighted) adjacency matrix of the network graph ${\cal G}$ | | k_{v} | (weighted) degree of node $v \in \mathcal{V}$ | | | | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering # Aggregation rules I | attribute | aggregated attribute | mapping | values
or units | |-----------------------|----------------------|---|--------------------| | latitude & longitude | $(x_c, y_c)^T$ | $\frac{1}{ \mathcal{V}_c }\sum_{v\in\mathcal{V}_c}(x_v,y_v)^T$ | \mathbb{R}^2 | | power capacity | $G_{c,s}$ | $\sum_{oldsymbol{v}\in\mathcal{V}_c}ar{G}_{oldsymbol{v},oldsymbol{s}}$ | MW | | installable potential | $G_{c,s}^{ m max}$ | $\sum_{oldsymbol{v} \in \mathcal{V}_c}^{oldsymbol{G}_{oldsymbol{v},oldsymbol{s}}^{\max}}$ | MW | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering **(•)** ## **Aggregation rules II** | attribute | agg.
attribute | mapping | values or units | |----------------------|-------------------|---|-----------------| | length | $I_{(c,d)}$ | $\min_{(v,w)\in E_{(c,d)}} I_{(v,w)}$ | km | | power capacity | $F_{(c,d)}$ | $\sum_{(v,w)\in E_{(c,d)}} F_{(v,w)}$ | MVA | | length
underwater | $u_{(c,d)}$ | $\frac{1}{l_{(c,d)}}\sum_{(v,w)\in E_{(c,d)}} (I\cdot u)_{(v,w)}$ | p.u. | References Miscellaneous 00000000000 **Energy System Modeling** 000000 Effects of Spatial Resolution 000000000 Methods to Improve Clustering 00000000000000 **(•)** | attribute | agg.
attribute | mapping | values
or units | |----------------------------------|--------------------------------------|---|--------------------| | power capacity | $\mathcal{S}_{(c,d)}^{\mathrm{nom}}$ | $\sum_{(v,w)\in E_{(c,d)}} s_{(v,w)}^{\text{nom}}$ | MVA | | power capacity maximum | $\mathcal{S}_{(c,d)}^{\min}$ | $\sum_{(v,w)\in E_{(c,d)}}\mathbf{s}^{\min}_{(v,w)}$ | MVA | | power capacity minimum | $s_{(c,d)}^{\max}$ | $\sum_{(v,w)\in E_{(c,d)}}\mathbf{S}^{\max}_{(v,w)}$ | MVA | | number of parallel lines | $n_{(c,d)}^{ m parallel}$ | $\sum_{(v,w)\in E_{(c,d)}} n_{(v,w)}^{\text{parallel}}$ | \mathbb{R} | | terrain factor for capital costs | $t_{(c,d)}$ | $ E_{(c,d)} ^{-1} \sum_{(v,w) \in E_{(c,d)}} t_{(v,w)}$ | p.u. | References Miscellaneous 00000000000 **Energy System Modeling** 000000 Effects of Spatial Resolution 000000000 Methods to Improve Clustering 00000000000000 # **Final Energy Consumption by Sector** References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering contents based on [15] Martha Frysztacki and Tom Brown. "Modeling Curtailment in Germany: How Spatial Resolution Impacts Line Congestion". In: 2020 17th International Conference on the European Energy Market (EEM), 2020, pp. 1–7, DOI: https://doi.org/10.1109/EEM49802.2020, 9221886 References Miscellaneous 00000000000 Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering # **Lessons Learned to Adapt Calibration Methods** Fit a function to, for example: $$\mathbf{a} \cdot \log (\mathbf{b} \cdot \mathbf{x}) + \mathbf{c}$$ & pass constraints to optimisation: $$\mathbf{G_{v,s}}^{\min} \leq G_{v,s} \leq \mathbf{G_{v,s}}^{\max}$$ References Miscellaneous 000000000 Energy System Modeling റററ്റ്റ Effects of Spatial Resolution Methods to Improve Clustering ### Technology Variables are Subject to Expansion Limits & Restricted Amount of CO₂ (Equivalents) Expansion of Generators and Storages is subject to upper and lower bounds: $$\textit{G}_{\textit{v},\textit{s}}^{\min} \leq \textit{G}_{\textit{v},\textit{s}} \leq \textit{G}_{\textit{v},\textit{s}}^{\max} \quad \forall \textit{v} \in \mathcal{V}, \: \textit{s} \in \mathcal{S}^{\text{re}}$$ $$H_{v,r}^{\min} \leq H_{v,r} \leq H_{v,r}^{\max} \quad \forall v \in \mathcal{V}, \ r \in \mathcal{R}.$$ $$F_{(v,w)}^{\min} = F_{(v,w)} \qquad \forall (v,w) \in E.$$ $$\sum_{v \in \mathcal{V}, s \in \mathcal{S}, t \in \mathcal{T}} \frac{1}{\eta_{v,s}} \rho_s w_t g_{v,s,t} \leq \Gamma_{CO_2} \cdot \sum_{z \in \mathcal{Z}} \gamma_z.$$ Miscellaneous **Energy System Modeling** noñóo Effects of Spatial Resolution Methods to Improve Clustering Expansion of Transmission Lines is subject to a lower bound: $$F_{(v,w)}^{\min} \leq F_{(v,w)} \quad \forall (v,w) \in E.$$ The upper bound is given as a cumulative cap (measured in MWkm) $$\sum_{(v,w)\in E} I_{(v,w)} F_{(v,w)} \leq \left(1 + \bar{F}^{\max}\right) \sum_{(v,w)\in E} I_{(v,w)} \cdot F_{(v,w)}^{\min}$$ References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering Generation of conventional generators is bound by their installed capacity $$0 \leq g_{v,s,t} \leq G_{v,s} \quad \forall v \in \mathcal{V}, \ s \in \mathcal{S}^{\text{con.}}, \ t \in \mathcal{T}.$$ Generation of renewable generators is bound by a weather-related fraction of their installed capacity $$0 < q_{v,s,t} < \bar{q}_{v,s,t}G_{v,s} \quad \forall v \in \mathcal{V}, s \in \mathcal{S}^{re}, t \in \mathcal{T}.$$ State of charge is bound by the capacity of the storage unit $$0 \le e_{v,r,t} \le T_r H_{v,r,t} \quad \forall v \in \mathcal{V}, r \in \mathcal{R}, t \in \mathcal{T}.$$ References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### State of Charge (Storage) Must be Consistent (Dis)charging of storage units is constraint by their thermal ratings $$0 \le h_{v,r,t}^+, h_{v,r,t}^- \le H_{v,r} \quad \forall v \in \mathcal{V}, r \in \mathcal{R}, t \in \mathcal{T}.$$... and must be consistent with its earlier state of charge and operational behaviour while accounting for all efficiencies (charge, discharge, standing, spillage, ...) $$\begin{split} \boldsymbol{e}_{v,r,t} &= \boldsymbol{w}_t \cdot \left(\eta_{v,r,+} \cdot \boldsymbol{h}_{v,r,t}^+ - \eta_{v,r,-}^{-1} \cdot \boldsymbol{h}_{v,r,t}^- \right) \\ &+ \boldsymbol{w}_t \cdot \left(\boldsymbol{h}_{v,r,t}^{\text{inflow}} - \boldsymbol{h}_{v,r,t}^{\text{spill}} \right) + \eta_{v,r,0}^{\boldsymbol{w}_t} \cdot \boldsymbol{e}_{v,r,t-1} \\ \forall v \in \mathcal{V}, \ r \in \mathcal{R}, \ t \in \mathcal{T} \backslash \{0\} \end{split}$$ Additionally, we require reservoirs to be filled by the end of the year to the same level as they were at the beginning of the year. $$e_{v,r,0} = e_{v,r,|\mathcal{T}|} \quad \forall v \in \mathcal{V}, r \in \mathcal{R}.$$ References Miscellaneous **Energy System Modeling** 000000 Effects of Spatial Resolution Methods to Improve Clustering ### Power Flows Must Obey Line Limits and Kirchhoff's Laws Power flows are constrained by the transmission line capacities minus a 30% security margin $$|f_{(v,w),t}| \leq 0.7 \cdot F_{(v,w)} \quad \forall (v,w) \in E, \ t \in \mathcal{T}.$$ $$\sum_{w \in \mathcal{V}: \, (v,w) \in E} \mathcal{K}_{v,(v,w)} f_{(v,w),t} = \! d_{v,t} + \sum_{r \in \mathcal{R}} \left(h_{v,r,t}^+ - h_{v,r,t}^- \right) -$$ $$\sum_{s \in \mathcal{S}} g_{v,s,t} \quad \forall v \in \mathcal{V}, \ t \in \mathcal{T}$$ $$\sum_{(v,w)\in c} \mathcal{L}_{(v,w),c} x_{(v,w)} f_{(v,w),t} = 0 \quad \forall t \in \mathcal{T}, \ c \in \mathcal{C}.$$ Miscellaneous **Energy System Modeling** ററററ്റ്റ Effects of Spatial Resolution Methods to Improve Clustering ### Optimisation Model: Computational Resource Requirements to the creators Currently, there does not exist an acceptable open-source solver for such large scale modeling. A promising benchmark of 3 open-source and the commercial solver Gurobi on small PyPSA models: European Electricity Model: implementation in HiGHS unacceptably slow relative to Gurobi. For example: | $ \mathcal{V} \mid \mathcal{T} $ | | ratio [s] | | |------------------------------------|------|-----------|--| | 5 | 240 | 4:21 | | | 100 | 240 | 521:1148 | | | 5 | 8760 | 180:11363 | | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering Case 1: simultaneous clustering Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering Case 2: clustering on siting resolution Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering Case 3: clustering on transmission nodes Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### k-means [16] #### Problem with k-means: does not see renewable generation or connectivity of the transmission grid $$\min_{(x_c, y_c)^T \in \mathbb{R}^2} \sum_{c=1}^k \sum_{v \in V_c} w_v \| (x_c, y_c)^T - (x_v, y_v)^T \|_2$$ $\Theta(\mathbf{i})$ # Hierarchical Agglomerative Clustering: Ward's Method [17] from the creators of PyPSA meets Earth - bottom-up - initially: each node is its own singleton cluster - iteration: aggregate two adjacent clusters with most similar feature $f: \mathcal{V} \mapsto \mathbb{R}^n$ (greedy) - ⇒ Freedom to choose: "feature" f; ideally incorporating renewable resource availability #### Our choice: $$f^{ ext{cap}}(v) := ar{g}_{ extstyle v, s} = egin{pmatrix} ar{g}_{ extstyle v} ext{, solar, } t_1 \ ar{g}_{ extstyle v} ext{, solar, } t_2 \ \dots \ ar{g}_{ extstyle v} ext{, solar, } t_2 \ \dots \ ar{g}_{ extstyle v} ext{, solar, } t_{|\mathcal{T}|} \ ar{g}_{ extstyle v} ext{, wind, } t_1 \ ar{g}_{ extstyle v} ext{, wind, } t_2 \ \dots \ ar{g}_{ extstyle v} ext{, wind, } t_{|\mathcal{T}|} \end{pmatrix}$$ References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering 00000000000000 ### Clauset-Newman-Moore Greedy Modularity Maximisation [18] the creators of PyPSA meets Earth - aim: find community structures in (large) networks - initially: each node is its own sigleton cluster - iteration: aggregate adjacent clusters that maximise modularity Q most $$Q = \frac{1}{2m} \sum_{v,w \in \mathcal{V}} \left(A_{v,w} - \frac{k_v k_w}{2m} \right) \delta(c_v, c_w),$$ where $$\underline{\mathcal{A}_{v,w} := \begin{cases} w_{(v,w)} & \text{if } (v,w) \in E \\ 0 & \text{otherwise} \end{cases}}, \quad \underline{m := \frac{1}{2} \sum_{v,w} \mathcal{A}_{v,w}}, \quad \underline{k_v := \sum_{w} \mathcal{A}_{v,w}}, \quad \underline{\delta(c_v, c_w) := \begin{cases} 1 & \text{if } c_v = c_w \\ 0 & \text{otherwise} \end{cases}}$$ $$weighted \ \textit{adjacency matrix}$$ $$weighted \ \textit{degree of node } v$$ $$weighted \ \textit{degree of node } v$$ and $w_{(v,w)} := \frac{1}{|z_{(v,w)}|}$ (inverse impedance) References 63/29 Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering $\Theta(\mathbf{\hat{I}})$ Disaggregation & Feasibility 25.4.2024 $$\Delta Q(v, w) \sim A_{v,w} - \frac{k_v k_w}{2m}$$ References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering $$\Delta Q(v, w) \sim A_{v,w} - \frac{k_v k_w}{2m}$$ $$\mathcal{A}_{0,2} = 1 > rac{k_0 k_2}{2m} pprox 0.17$$ References Miscellaneous **Energy System Modeling** റററ്റ്റ Effects of Spatial Resolution Methods to Improve Clustering $$\Delta Q(v, w) \sim A_{v,w} - \frac{k_v k_w}{2m}$$ $A_{2,3} = 0.1 < \frac{k_2 k_3}{2m} \approx 0.18$ References Miscellaneous **Energy System Modeling** റററ്റ്റ Effects of Spatial Resolution Methods to Improve Clustering $$\mathcal{G}_1:\mathcal{A}_{0,2}pprox 0.067> rac{k_0k_2}{2m}pprox 0.006$$ $$\mathcal{G}_2: \mathcal{A}_{0,1} = 0.05 > rac{k_0 k_1}{2m} pprox 0.010$$ $$\mathcal{G}_{3}:\mathcal{A}_{1,5}=0< rac{k_{1}k_{5}}{2m}pprox0.010$$ $$G_4: A_{2,3} = 0.005 < \frac{k_2 k_3}{2m} \approx 0.007$$ References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### **Choice of Regions Strongly Impacts Optimal Power Flows** References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### **Choice of Regions Strongly Impacts Optimal Power Flows** | CO ₂ reduction | 100% | |-----------------------------|--------| | | ρ | | k-means | 0.75 | | $f^{\operatorname{cap}}(v)$ | 0.76 | | $f^{\text{time}}(v)$ | 0.78 | | Q | 0.75 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### **Choice of Regions Strongly Impacts Optimal Solution: 67** | CO ₂ reduction | 60% | | 100% | | |-----------------------------|-------------|-------------|-------------|-------------| | technology | wind solar | | wind | solar | | k-means | 0.33 + 2.65 | 0.01 + 2.34 | 0.22 + 2.43 | 0.25 + 0.71 | | $f^{\operatorname{cap}}(v)$ | 0.23 + 0.79 | 0.05 + 0.31 | 0.14 + 1.12 | 0.05 + 0.12 | | $f^{\text{time}}(v)$ | 0.02 + 2.26 | 0.07 + 0.99 | 0.51 + 1.63 | 0.06 + 0.24 | | Q | 0.42 + 1.45 | 0.16 + 0.71 | 0.61 + 1.76 | 0.07 + 0.48 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### **Choice of Regions Strongly Impacts Optimal Solution: 97** | CO ₂ reduction | 60% | | 100% | | |-----------------------------|---|-------------|-------------|-------------| | MSE | wind solar | | wind | solar | | k-means | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 0.51 + 3.33 | 0.12 + 1.23 | | $f^{\operatorname{cap}}(v)$ | | | 0.01 + 2.22 | 0.11 + 0.15 | | $f^{\text{time}}(v)$ | 0.04 + 3.17 | 0.08 + 0.79 | 0.55 + 1.94 | 0.26 + 0.28 | | Q | 0.36 + 1.31 | 0.47 + 1.17 | 0.25 + 1.98 | 0.17 + 0.78 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering Disaggregation & Feasibility 25.4.2024 ### **Choice of Regions Strongly Impacts Optimal Solution: 127** | CO ₂ reduction | 60% | | 100% | | |-----------------------------|-------------|-------------|-------------|-------------| | technology | wind solar | | wind | solar | | k-means | 0.42 + 5.34 | 0.06 + 2.17 | 0.51 + 2.22 | 0.21 + 1.03 | | $f^{\operatorname{cap}}(v)$ | 0.79 + 0.86 | 0.02 + 0.82 | 0.2 + 1.14 | 0.11 + 0.15 | | $f^{\text{time}}(v)$ | 0.81 + 2.74 | 0.02 + 1.45 | 0.14 + 2.38 | 0.24 + 0.75 | | Q | 0.36 + 1.31 | 0.47 + 1.17 | 0.24 + 2.2 | 0.36 + 1.07 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### **Choice of Regions Strongly Impacts Optimal Solution** | MSE | hydrogen | battery | |-----------------------------|-----------|-----------| | CO ₂ reduction | 60% | | | k-means | 0.6 + 0.2 | 1.0 + 0.7 | | $f^{\operatorname{cap}}(v)$ | 1.3 + 0.0 | 0.4 + 1.3 | | $f^{\text{time}}(v)$ | 0.6 + 0.5 | 0.5 + 0.2 | | Q | 0.5 + 0.0 | 0.8 + 1.4 | | CO ₂ reduction | 100 |)% | | k-means | 0.7 + 1.5 | 0.2 + 0.3 | | $f^{\operatorname{cap}}(v)$ | 0.2 + 0.6 | 2.2 + 0.6 | | $f^{\text{time}}(v)$ | 0.5 + 2.7 | 0.9 + 0.3 | | Q | 0.0 + 2.8 | 0.0 + 0.2 | References Miscellaneous Energy System Modeling 000000 Effects of Spatial Resolution Methods to Improve Clustering ### Choice of Regions Strongly Impacts Optimal Power Flows: 67 the creators of PyPSA meets Earth | CO ₂ reduction | 60% | | 100% | | |-----------------------------|-------|-----------------------|--------|-----------------------| | | ho | <i>r</i> ₂ | ρ | <i>r</i> ₂ | | k-means | 0.704 | 0.188 | 0.725 | 0.195 | | $f^{\operatorname{cap}}(v)$ | 0.754 | 0.174 | 0.759 | 0.187 | | $f^{\text{time}}(v)$ | 0.749 | 0.173 | 0.765 | 0.181 | | Q | 0.739 | 0.173 | 0.740 | 0.187 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### Choice of Regions Strongly Impacts Optimal Power Flows: 97 the creators of PaySA meets Earth | CO ₂ reduction | 60% | | 100% | | |-----------------------------|---------------|-----------------------|--------|-----------------------| | | ρ | <i>r</i> ₂ | ρ | <i>r</i> ₂ | | k-means | r-means 0.746 | | 0.755 | 0.175 | | $f^{\operatorname{cap}}(v)$ | 0.769 | 0.160 | 0.768 | 0.173 | | $f^{\text{time}}(v)$ | 0.767 | 0.160 | 0.781 | 0.169 | | Q^{-1} | 0.757 | 0.164 | 0.757 | 0.179 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### Choice of Regions Strongly Impacts Optimal Power Flows: 12 Treators of PyPSA meets Earth | CO ₂ reduction | 60% | | 100% | | |-----------------------------|-------|-----------------------|--------|-------| | | ho | <i>r</i> ₂ | ρ | r_2 | | k-means | 0.735 | 0.164 | 0.772 | 0.166 | | $f^{\operatorname{cap}}(v)$ | 0.802 | 0.144 | 0.786 | 0.163 | | $f^{\text{time}}(v)$ | 0.782 | 0.147 | 0.808 | 0.152 | | Q | 0.789 | 0.152 | 0.792 | 0.165 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ### Disaggregation is Not Unique: 3 Approaches | Short name | Method description | Formula | |-------------|--|---| | Optimal I | low-resolved capacities are distributed | | | uniform | uniformly across all nodes within a cluster | $G_{c,s} \mapsto rac{1}{ \mathcal{V}_c } egin{pmatrix} G_{c,s} \ \ G_{c,s} \end{pmatrix} \in \mathbb{R}^{ \mathcal{V}_c }$ | | re-optimize | anew by re-optimising capacities within each cluster & enforcing build-out capacity totals per technology and region | objective + constraints + $\sum_{v \in \mathcal{V}_c} G_{v,s} = G_{c,s}$ | | min excess | according to the objective to concentrate generation at nodes with higher demand and grid capacity | $\begin{aligned} & \min_{G_{v,s}} \sum_{s \in \mathcal{S}, t \in \mathcal{T}} \left[\bar{g}_{v,s,t} G_{v,s} - \right. \\ & d_{v,t} - 0.7 \sum_{\substack{l_{(v,w)} \in E: \\ v = c \lor w = c}} F_{(v,w)} \right]^{+} \end{aligned}$ | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering ## Accuracy of Disaggregation Balances Computational Requirements | | Implementation | Solving Time | Memory (RAM) | Results Quality | |-------------|----------------|--------------|--------------|-----------------| | uniform | 1 | 1 | 1 | X | | min excess | X | 1 | 1 | 1 | | re-optimize | X | X | X | 1 | References Miscellaneous Energy System Modeling Effects of Spatial Resolution Methods to Improve Clustering