

Felix Jakob Fliegner

Chair of Energy Economics, TU Dresden & System of the Future, 50Hertz

Form follows function?

Dualism between maritime spatial planning and the future offshore grid

Modellers' Exchange Workshop, Brussels // 25.04.2024

Content of this presentation is subject to the manuscript "High-resolution scenario building support for offshore grid development studies in a geographical information system" published in *Energy Strategy Reviews*. It depicts the sole view of the author and does not allow any conclusion on the positioning of 50Hertz

Content

- 1. The core challenge How to connect future offshore wind?
- 2. Setting up a search graph in GIS Pencil or Paper?
- 3. The case of Baltic and North Sea
- 4. Looking ahead Coupling with an energy system model

How to connect future offshore wind?

Problem statement and research focus

Ambitions for offshore wind almost doubled in past two years

Offshore wind power capacity in Northern Europe

Wind farm development areas in Europe

Designation areas

How to integrate unprecedented amounts of offshore wind efficiently into the energy system?

Not just for the green power – considerations for the development of offshore grid infrastructure

Increased Interconnection of Markets

Competing Maritime Spatial Interests

Leveraging smoothened volatility

How to design "good" scenarios for transmission capacity expansion studies?

Pencil or computer?

Setup of a search graph in GIS

Search graph – setup of candidate lines for investment

TECHNISCHE

JNIVERSITÄT

Graph refinement – make the search graph more accurate

Key input for graph refinement is the maritime spatial planning in all countries

The case of Baltic and North Sea

Application of the GIS methodology

Point allocation

The sea space is managed intensively

Modelers' Exchange Workshop

Refined search graph reduces uncertainty in the analysis

Looking ahead

Conclusions from GIS analysis and next steps

Coupling the Search Graph with an Energy System Model

GIS analysis Optimisation of Power flow Input Data investment decisions **Attention points** Network Points Search Graph Reduction in model run time POC HUBspoke OWFradial spatial planning SE 100 200 km

- Dualism between grid development and
- Understand path dependencies
- Discuss least regret investments

The next generation offshore grid...

... faces unprecedented ambitions and speed in offshore wind power uptake ...

... evolves in a heavily managed sea space...

... rendering its development a complex optimisation problem ...

... where a GIS analysis can provide a high-resolution, yet tangible search graph for subsequent optimisation exercises.

Fliegner, Möst 2023: High-resolution scenario building support for offshore grid development studies in a geographical information system *Energy Strategy Reviews*

References

- 1) 4C Offshore web map: https://map.4coffshore.com/offshorewind/
- 2) ENTSOE 2020, TYNDP Scenario report, https://2020.entsos-tyndp-scenarios.eu/
- 3) ENTSOE 2024, ONDP Offshore Network Development Plans (entsoe.eu)
- 4) EU Commission 2023, Non-binding agreements for offshore wind Member States agree 12) Klaus Goepel, Implementing the Analytic Hierarchy new ambition for expanding offshore renewable energy (europa.eu)

 Process as a Standard Method for Multi-Criteria Dec
- 5) Wind Europe 2022, Wind energy in Europe: 2021 Statistics and the outlook for 2022-2026, https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2021-statistics-and-the-outlook-for-2022-2026/
- 6) Ioannis Konstantelos, Rodrigo Moreno, Goran Strbac, Coordination and uncertainty in strategic network investment: Case on the North Seas Grid, Energy Economics, Volume 64, 2017, https://doi.org/10.1016/j.eneco.2017.03.022
- 7) Juan Gea-Bermúdez, Lise-Lotte Pade, Matti Juhani Koivisto, Hans Ravn, Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon, Energy, Volume 191, 2020, https://doi.org/10.1016/j.energy.2019.116512
- João Gorenstein Dedecca, Sara Lumbreras, Andrés Ramos, Rudi A. Hakvoort, Paulien M. Herder, Expansion planning of the North Sea offshore grid: Simulation of integrated governance constraints, Energy Economics, Volume 72, 2018, https://doi.org/10.1016/j.eneco.2018.04.037
- 9) Martin Kristiansen, Magnus Korpås, Hossein Farahmand, Towards a fully integrated North Sea offshore grid: An engineering-economic assessment of a power link island, WIREs Energy and Environment, 2018, https://doi.org/10.1002/wene.296
- 10) Harald G. Svendsen, Planning Tool for Clustering and Optimised Grid Connection of Offshore Wind Farms, Energy Procedia, Volume 35, 2013, https://doi.org/10.1016/j.egypro.2013.07.182

- 11) Felix Fliegner, Offshore grid topology optimisation with a geographical information system, Journal of Physics: Conference Series, Volume 2362, EERA DeepWind Offshore Wind R&D Conference 2022 Trondheim, https://doi.org/10.1088/1742-6596/2362/1/012012
- 12) Klaus Goepel, Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making In Corporate Enterprises – A New AHP Excel Template with Multiple Inputs, Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpu, 2013, https://doi.org/10.13033/isahp.y2013.047
 - 13) de Lima, R.M., Osis, R., de Queiroz, A.R. and Santos, A.H.M., Least-cost path analysis and multi-criteria assessment for routing electricity transmission lines. IET Gener. Transm. Distrib., 2016, https://doi.org/10.1049/iet-gtd.2016.1119

Felix Jakob Fliegner Chair of Energy Economics, TU Dresden | System of the Future, 50Hertz

FelixJakob.Fliegner@50hertz.com https://de.linkedin.com/in/fliegner

50Hertz Transmission GmbH Heidestraße 2 • 10557 Berlin

