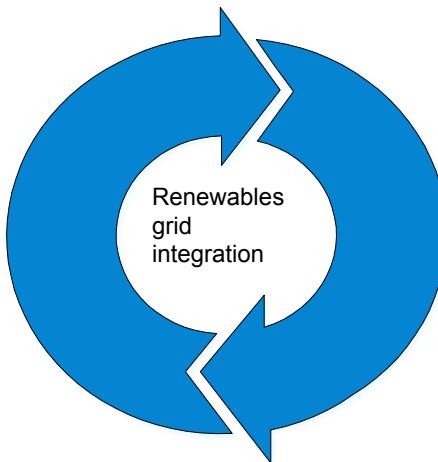


Renewables Grid Initiative

Applications and
benefits of storage,
Montreux,
Switzerland
27/01/2011

Towards a decarbonised power system alliance


Renewables Grid Initiative

Renewables grid integration

Grid expansion

- Within regions/countries
- Between regions

Storage

- System-focused
- Dedicated to a renewables source

Renewables Grid Initiative

Storage characteristics

- Rating
 - energy
 - power
 - discharge
- Response
 - start-up
 - deployment
- Efficiency
 - round-trip
 - retention losses
- Energy and power density
- Charging costs
- Portability
- Operating costs (labor, plant/equipment maintenance)
- Lifetime
- Reliability
- Power conditioning
- Environmental impact

Potential applications (1/6)

Balancing

- Classified according to different timeframes
 - primary (within seconds)
 - secondary (within minutes)
 - tertiary (several minutes)
- Current situation: mainly hydro and part-load power plants
- Not feasible in the future power mix
 - inefficient
 - limited available conventional capacity
 - increasing need for balancing capacity due to renewables growth (intra-day and/or seasonal variations)

Potential applications (2/6)

Balancing

- Storage technologies can adapt to the different timeframes required
 - immediate response for frequency regulation
 - reserve for secondary and tertiary response
- Key characteristics
 - deployment time
 - discharge time
 - efficiency
 - discharge cycle frequency
 - electricity prices

Potential applications (3/6)

Capacity displacement/deferral

- Need for additional capacity due to:
 - insufficient generation capacity
 - insufficient/congested transmission capacity
- Current situation: need for additional capacity is modest and is related to demand growth
- Future power mix
 - renewables can not displace completely conventional generation
 - renewables require more transmission capacity compared to other sources

Potential applications (4/6)

Capacity displacement/deferral

- Dedicated storage for a renewable source
 - smooth and predictable generation output able to adapt to market opportunities
 - reduce economic risk of forecast errors
 - able to operate as baseload, mid-merit or peak plant
- Key characteristics
 - reliability
 - dependent on renewable source profile and operational strategy

Potential applications (5/6)

Arbitrage

- Need for electricity time-shift to optimize profits
 - “Buy low/sell high”
- Storage as an enabling solution for arbitrage
- Key characteristics
 - operating costs
 - electricity prices
 - efficiency

Potential applications (6/6)

Arbitrage

- Arbitrage more important in the future power mix
 - day/night renewables (wind) variation
 - avoid curtailment due to peak generation, low demand and/or transmission congestion
- Other applications
 - voltage support
 - improved power quality
 - decentralized storage

Next up

- Pumped hydroelectric and alternative approaches to storage
- Challenges
 - political
 - technical
 - market