

Die Berater der Energie- und Wasserwirtschaft

Overhead Lines <u>and</u> Underground Cables – Potential Benefits of partial undergrounding

Unterzeile

Dr. Michael Ritzau

RGI Cable Workshop "Understanding Underground Cables", Zurich, February 13th, 2013

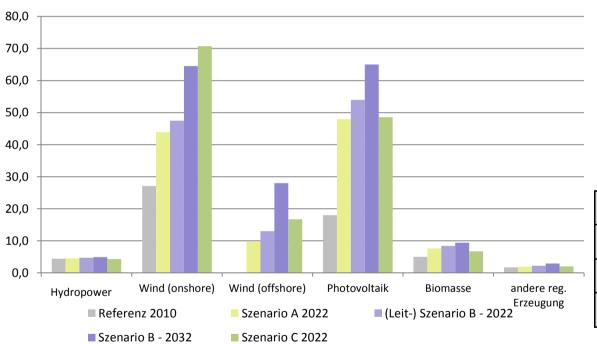
About me

Dr.-Ing. Michael Ritzau

- Born in 1956
- Graduated in electrical engineering at the RWTH Aachen
- Doctorate in engineering (1989) at the Institute for Electrical
 Plant and Power Industry
- 1988 co-founder and managing director of BET-Büro für
 Energiewirtschaft und Technische Planung GmbH in Aachen
- Fields of expertise:
 - Energy markets
 - Economic and technical feasibility of power plant projects (fossil fuels and renewables)
 - Net access for power plants & electrical grids
 - Councelling in strategic, energy-related matters for decision makers
- Member of the panel for energy policy in the German Wirtschaftsrat (economic counsel)
- Member of the Fuel & Water Committee in the VIK

Content

Introduction	I Part 1 I
Partial Cabling Layouts	I Part 2 I
Macroeconomic View on Costs	I Part 3 I
Conclusion	I Part 4 I


Tasks in an Overview

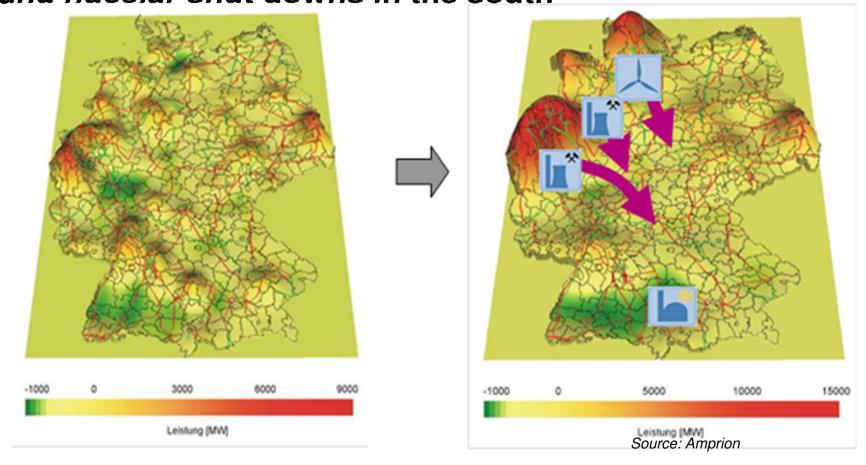
Transmission Grid: Rather flexible and controllable Conventional Plants: Renewables: Market for System Services · Falling price per kWh (Energy · Security of Investment, · Progressing Grid Extension Only Market) · Feed-in independently of system constitution Offshore- grid connection critical No Incentive for Investments Reduce Market prices (low variable costs) Long-distance Transport required Rising prices fpr Primary Energy System Stability is vital Distribution Network High Voltage: Similar to Transmission Grid Power Flow to the transmission Grid is adverse to the layout Distribution Network Medium and Low Voltage: Industry Trade, Households Large Consumers: Extremely heterogenic (North/South, urban/rural) Behave passive Use flexibilities for cost Regulation forces extreme Savings at Investments · No sensitivity for prices reductions • Innovations (Smart Grids, etc...) open Energy Savings open Energy Savings open

2011 -2012: National Transmission Development Plan 2012 (Netzentwicklungsplan 2012)

Installed Capacity of Renewables [GW]

Scenario A: moderate

Scenario B: medium


Scenario C: strong

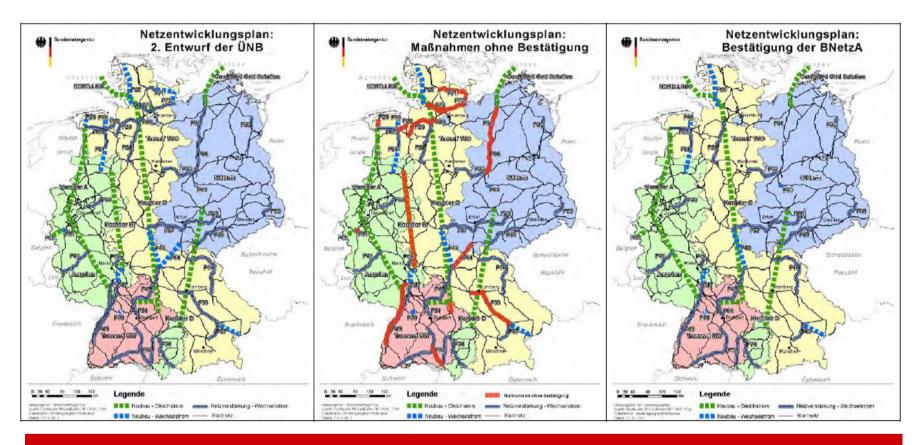
Share of Renewables:

Scenario A	44 %
Scenario B	50 %
Scenario B – 2032	69 %
Scenario C	58 %

Huge increase of load flows driven by wind in the north and nucelar shut downs in the south

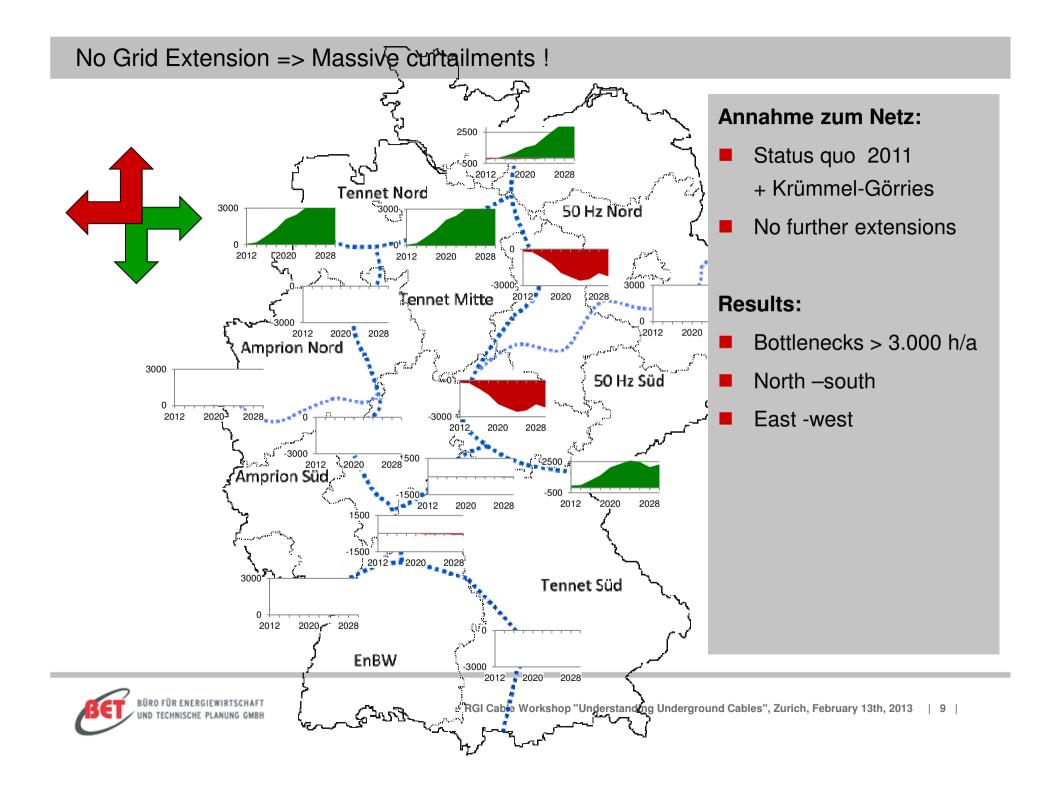
Bottlenecks lead to nearly daily redispatcg requirements!

2003 - 2005: DENA Grid Study 1



Some 1,200 km AC OHL Extension - but 280 km realized within 8 years

Source: Dena-Grid Study 1, additional information provided by the TSO, own research



Applied and approved German national grid development plan

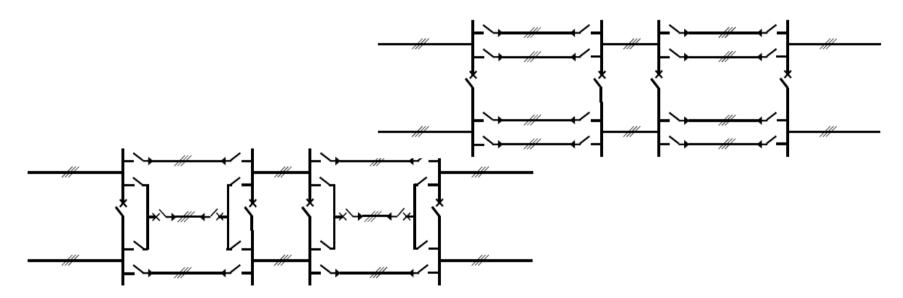
2,800 km additional grid extension to integrate 50 % Renewables

Motivation of study for BMU

- Massive Grid extension to integrate renewables
 - Fast grid extension required
 - If not: Massive curtailments!
 - Accelaration of Overhead Lines Permits
 - EnLAG Energieleitungsausbaugesetz partial underground cables
 - Bundesbedarfsplan
- What ist the potential benefit of accelaration of grid extension?

Partial Undergrounding might be a suitable approach

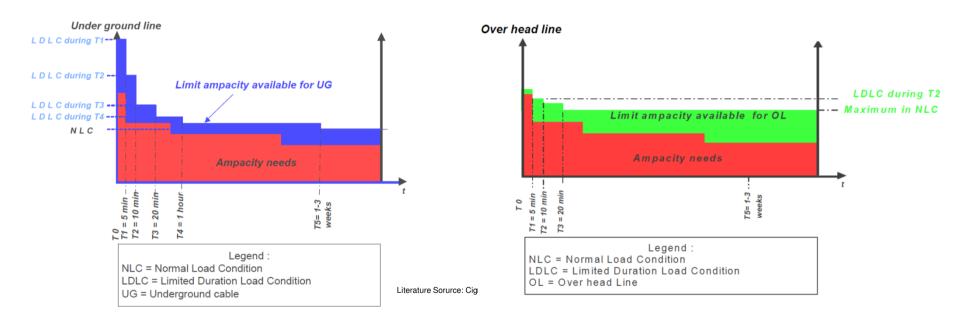
Challenges of 380 kV HV underground cables


- Overhead lines are standard in tramsmission grid
 - There is a longer history of technical usage compared to buried cables
 - On 380 kV level the share of buried cable is
 - around 1,2 % in Europe (ENTSO-E)
 - and smaller than 0,4 % in Germany
- In comparison to traditional overhead lines buried cables got:
 - A longer breakdown and maintenance duration
 - Statistic show a longer breakdown duration by factor 25
 - Higher capacity is necessary
 - Power factor correction is needed for buried cables longer than 10 km
 - More expensive investment costs
 - Buried cables are depending on the specific layout several times more expensive in comparison to overhead lines for the same transmission function

Not a lot of experience with HV underground cables

Systemic view of partial cabling I

- Impact of a longer breakdown and maintenance duration
 - Due to the (n-1)-criteria security of supply is not immediately influenced
 - With partial cabling there are often more cable systems required compared to overhead lines because of the lower transmission capacity
 - → the failure of a cable system doesn't lead to a total breakdown of a transmission system



Failure of a cable doesn't have to affect the transmission system

Systemic view of a part cabling II

- With respect to "General Guidelines for the Integration of a new Underground Cable System in the Network" (Literature Source: Cigré Technical Brochure 250) in (n-1)-cases with partial undergrounding the cable may be overloaded for a acceptable time span
- Potentials have been investigated were appropriate

Cable overloading capabilities may lead to advantages in failure cases

Systemic view of a part cabling III

- Power factor correction is necessary for HV underground cables longer 10 km
 - Due to the geometrical layout of cables there system behaviour is different from overhead lines
 - Higher technical effort and investment cost result from that difference
 - Additional losses are generated
 - In general, long distance cable transmission is not to be favoured
- All part cabling concepts are planed for less than 10 km so far:
 - Part cabling project ,Ganderkesee St. Hülfe' by E-On in 2008:
 - 6-7 segments
 - With 1,7 8 km
 - Press release by Tennet in July 2011 on ,Ganderkesee St. Hülfe':
 - 2 segments
 - With 3 3,6 km

Partial cabling should be limited to appropriated distances

Systemic view of a part cabling IV

- Comparison of the Investment costs for 2 systems:
 - 68 km overhead lines
 - 60 km overhead lines and 2 underground cabel segments with 3 and 5 km
- Investment costs of the overhead line 68 km (2 systems)
 - 4 x 235/35: 51 Mio. €
 - 4 x 385/35: 58 Mio. €
 - 4 x 560/50: 95 Mio. €
- Part cabling with 3 or 4 cabelsystems(cs)
 - 4 x 235/35 + 3 cs: 123 Mio. €
 - 4x385/35 + 3 KS: 130 Mio. €
 - 4x385/35 + 4 KS: 137 Mio. €
 - 4x560/50 + 4 KS: 170 Mio. €

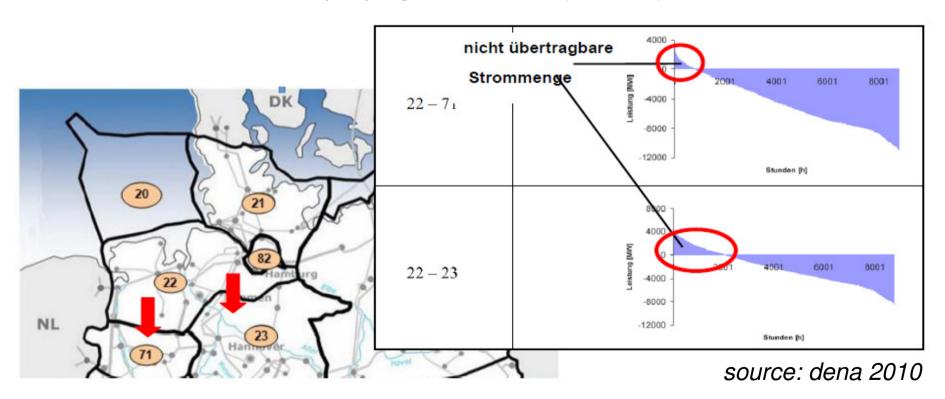
Cabeling more expensive by factor 1,8 – 2,4

Macroeconomic view on cost

- Grid bottlenecks cause costs for the welfare
- 127 GWh were cut in 2010 that lead to additional costs of 5.6 Mio. € in Germany (with a mean spotprice at EPEX of 44 €/MWh)
- Therefore delayed grid extension will lead to additional costs
- The question comes up if the additional costs for cabeling are acceptable if than a faster grid expension is possible
- The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) assigned a study ,Grid extension by underground cabeling or overhead lines with special consideration of the feedin of renewables'
 - Download: http://www.erneuerbare-energien.de/inhalt/47934/
 - This study was done by BET (Aachen), IZES (Saarbücken) and PowerEngS(Saarbrücken)

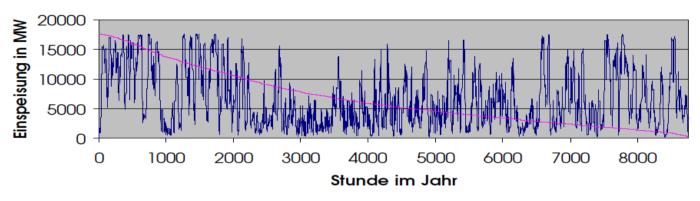
Not only Invest. Costs have to be assessed while investigating partial cabling

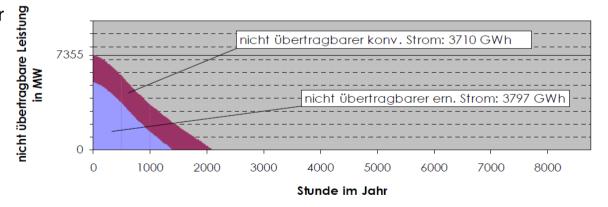
Direct costs of a bottleneck


- CostsBottleneck = CostsControl energy + CostsRedispatch + cut RE * Spotpriceintraday
- Costs for countrol energy:
 - Power plant technology
 - Location
 - Bidding strategy
- Costs for redispatch:
 - Corresponds with intraday price
 - Premium is the gap among intraday and day-ahead-price
- Compensation for cut RE feedin
 - Intraday
 - § 11 EEG: additional costs can come up

Costs of a bottleneck are hard to estimate

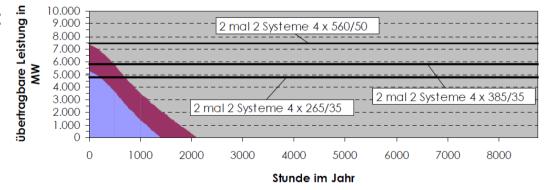
Example: Bottleneck in PLZ 2 area in year 2020


- Northwestern Germany:
 - 2009: >7.600 MW renewables (90% wind)
 - 2020: installes wind capacity larger than 20.000 MW (dena 2010)
 - 2020: not transmittable capacity larger than 7.300 MW (dena 2010)

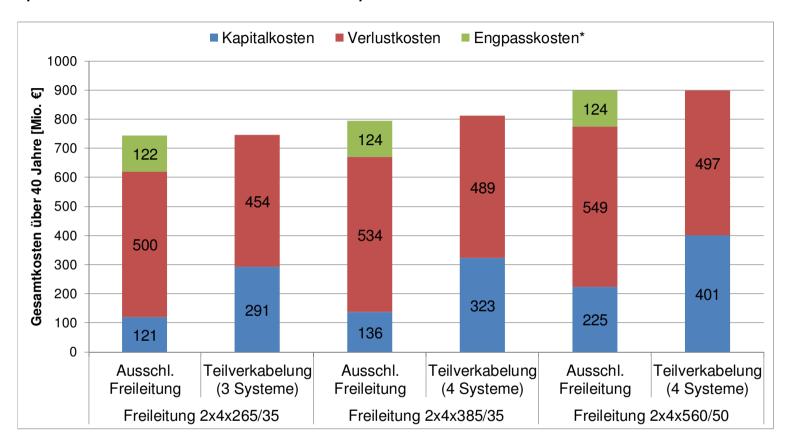


Example: not transferable capacity

Assumption: high wind feedin leads to bottleneck



- Windeinspeisung PLZ-2 Gebiet im Jahr 2020
- Jahresdauerlinie der Windeinspeisung
- Not transferable capacity ~ 7.500 GWh
 - ~ 49 % conventional power
 - ~ 51 % cut renewables

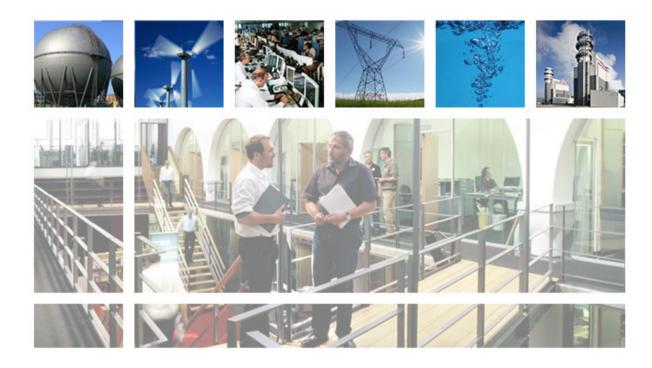

Example: cost of 1-year bottleneck

- Cost redispatch = quantity x (Intraday Day-ahead price)
 - Ø Intraday price 2010 Ø Day-Ahead price 2010 = 1,14 €/MWh
- Costs of cut renewables = quantity x Intraday price
 - Estimated spot price 2020: 63 €/MWh (Day-ahead)
 - Intraday price in 2020: 63 €/MWh + 1,14 €/MWh
- Estimated costs of bottleneck:
 - 3710 GWh * 1,14 €/MWh + 3797 GWh * (63 + 1,14 €/MWh) = 248 Mio. €
- To fix the bottlenecks there are 2 corridors including 2 systems needed. Depending on the choosen system the bottleneck stays.
- Costs of bottleneck of one corridor:
 - 4x265/35: 122 Mio. €
 - 4x385/35: 123,5 Mio. €
 - 4x560/50: 124 Mio. €

Example result: macroeconomic comparison

1-year delay corresponds with additional costs for partial cabling

Conclusion


- A delayed grid extension will lead to additional costs
- Though investment costs for partial cabling are higher compared to building merely overhead lines, costs of a potential delay may diminish the benefit of overhead lines
- The reduction can correspond to the needed additional cost for part cabeling → Costs of accelerating alternatives can be acceptable compared to overhead lines
- In the BMU study BET/IZES developed a systematic to evaluate bottlenecks in the grid
- It should be possible to interate this systematic into calculation for grid requirements
- In further studies benefits of earlier realization with respect to the system stability may be taken into account as well

Die Berater der Energie- und Wasserwirtschaft

Büro für Energiewirtschaft und technische Planung GmbH

BET GmbH

Aachen

Alfonsstraße 44 52070 Aachen

Telefon +49 241 47062-0 Telefax +49 241 47062-600 info@bet-aachen.de www.bet-aachen.de

Leipzig

Karl-Liebknecht-Straße 64 04275 Leipzig

Telefon +49 341 30501-0 Telefax +49 341 30501-49 info@bet-leipzig.de www.bet-leipzig.de

Hamm

Rotdornschleife 23 59063 Hamm

Telefon +49 2381 4500-76 Telefax +49 2381 4500-57 info@bet-hamm.de www.bet-hamm.de

BET Dynamo Suisse AG

Zug

Poststrasse 26 6301 Zug

Telefon +41 41 544 4602 Telefax +41 41 544 4603 info@bet-dynamo.ch www.bet-dynamo.ch

Zofingen

Junkerbifangstrasse 2 4800 Zofingen

Telefon +41 62 751 5894 Telefax +41 62 751 6093 info@bet-dynamo.ch www.bet-dynamo.ch

Puidoux

Route du Vergnolet 8 1070 Puidoux

Telefon +41 21 791 6545 Telefax +41 21 791 6530 info@bet-dynamo.ch www.bet-dynamo.ch